Хемосинтез и фотосинтез сравнение. Что такое хемосинтез? В чем его сходство с фотосинтезом? Способы питания организмов

В нашей статье мы рассмотрим, у каких организмов происходит хемосинтез. Это один из способов питания живых организмов, который встречается в природе у некоторых бактерий.

Способы питания организмов

Чтобы разобраться, что такое хемосинтез, необходимо сначала вспомнить, какие способы питания используют различные организмы. По данному признаку различают две группы существ: гетеро- и автотрофы. Первые способны питаться только готовыми органическими веществами. Белки, жиры и углеводы они поглощают и преобразуют с помощью специализированных вакуолей или органов пищеварительной системы. Гетеротрофами являются животные, грибы, некоторые бактерии.

Виды автотрофов

Сами синтезируют органические вещества, которые в дальнейшем используют для осуществления различных процессов жизнедеятельности. В зависимости от источника энергии, который при этом используется, различают еще две группы организмов. Это фото- и хемотрофы. Представителями первой из них являются растения. Они синтезируют углевод в глюкозу в ходе фотосинтеза. Этот процесс происходит только в зеленых пластидах хлоропластах при наличии солнечного света, воды и углекислого газа. Хемотрофами являются некоторые бактерии. Для синтеза органики им необходимы различные химические соединения, которые они окисляют. Сходства фотосинтеза и хемосинтеза заключаются в способности организмов самостоятельно образовывать необходимые им вещества, получая из окружающей среды углерод, воду и минеральные соли.

Хемосинтез: определение понятия и история открытия

Давайте разберемся подробнее. Что такое один из способов автотрофного питания, при котором происходит процесс окисления минеральных соединений для синтеза органических. Теперь выясним, у каких организмов происходит хемосинтез. Такой уникальной способностью в природе обладают только некоторые виды прокариот. Этот процесс был открыт в конце 19 века русским микробиологом Сергеем Николаевичем Виноградским. Работая в страсбургской лаборатории Антона де Бари, он осуществил опыт по получению энергии за счет окисления серы. Организмы, которые способны осуществлять этот химический процесс, он назвал аноргоксидантами. В ходе своих исследований ученому удалось открыть и До открытия процесса хемосинтеза к автотрофным организмам относили только фотосинтезирующие растения и сине-зеленые водоросли.

Отличия и сходства фотосинтеза и хемосинтеза

Оба вида автотрофного питания представляют собой пластический обмен, или ассимиляцию. Это значит, что в ходе этих процессов происходит образование органических веществ и газообмен. При этом исходными реагентами являются минеральные соединения. Фото- и хемосинтез являются путями осуществления круговорота веществ в биосфере. Все виды автотрофов обеспечивают необходимыми для жизнедеятельности условиями не только себя, но и другие организмы. К примеру, в ходе фотосинтеза выделяется кислород. Он необходим всему живому для дыхания. А хемотрофные преобразуют атмосферный азот в состояние, в котором он может усваиваться растениями.

Но между данными типами питания есть и ряд отличий. Хемосинтез происходит в которые не содержат зеленого пигмента хлорофилла. Причем для окисления они используют соединения только некоторых веществ: серы, азота, водорода или железа. Особенно важен этот способ питания в тех местах, где солнечный свет недоступен. Так, на большой глубине могут обитать только хемотрофы. Для процесса фотосинтеза обязательным условием является солнечная энергия. Причем у растений данный процесс происходит только в специализированных клетках, содержащих зеленый пигмент хлорофилл. Еще одним обязательным условием фототрофного питания является наличие углекислого газа.

Железобактерии

Что такое хемосинтез, можно рассмотреть на примере бактерий, которые преобразуют Их открытие также принадлежит С. Н. Виноградскому. В природе они широко распространены в пресных и соленых водоемах. Суть их хемосинтеза заключается в изменении валентности железа с двух до трех. При этом выделяется небольшое количество энергии. Поэтому железобактериям приходится осуществлять этот процесс очень интенсивно.

Поскольку бактерии являются одними из самых древних организмов, в результате их жизнедеятельности на планете образовались крупные залежи железных и марганцевых руд. В промышленности данные прокариоты используют для получения чистой меди.

Серобактерии

Данные прокариоты восстанавливают На исследовании именно этих организмов был открыт процесс хемосинтеза. Для окисления этот вид бактерий использует сероводород, сульфиды, сульфаты, политионаты и другие вещества. А некоторые прокариоты этой группы в ходе хемосинтеза накапливают элементарную серу. Это может происходить как в клетках, так и вне их. Эта способность используется в решении проблемы дополнительной аэрации и закисления почв.

Природной средой обитания серобактерий являются пресные и соленые водоемы. Известны случаи образования симбиозов этих организмов с трубчатыми червями и моллюсками, которые обитают в иле и придонной зоне.

Азотфиксирующие бактерии

Важное значение хемосинтеза в природе во многом определяется и деятельностью азотфиксирующих прокариот. Большинство из них обитают на корнях бобовых и злаковых растений. Их сожительство является взаимовыгодным. Растения обеспечивают прокариоты углеводами, которые были синтезированы в ходе фотосинтеза. А бактерии продуцируют азот, необходимый для полноценного развития корневой системы.

До открытия ценных свойств этого вида считалось, что уникальной способностью обладают листья бобовых. Позже выяснилось, что растения непосредственно не участвуют в процессе азотфиксации, а процесс осуществляют бактерии, обитающие в их корнях.

Этот вид прокариот осуществляет два вида химических реакций. В результате первой происходит превращение аммиака в нитраты. Растворы этих веществ поступают в растение с помощью корневой системы. Такие бактерии называются нитрифицирующими. Другая группа подобных прокариот превращает нитраты в газообразный азот. Они называются денитрификаторами. В результате их совокупной деятельности происходит непрерывный круговорот этого химического элемента в природе.

Азотфиксирующие бактерии проникают в корни растений в местах повреждения покровных тканей или через волоски зоны всасывания. Оказавшись внутри, прокариотические клетки начинают активно делиться, вследствие чего образуются многочисленные выпячивания. Они видны невооруженным глазом. Человек использует свойство азотфиксирующих бактерий для обеспечения почвы естественными нитратами, что приводит к повышению урожайности.

Природа и хемосинтез

Роль хемосинтеза в природе сложно переоценить. Процесс окисления неорганических соединений в природе является важной составляющей общего круговорота веществ в биосфере. Относительная независимость хемотрофов от энергии солнечного света делает их единственными обитателями глубоководных впадин и рифтовых зон океана.

Аммиак и сероводород, которые перерабатываются данными прокариотами, являются ядовитыми веществами. В этом случае значение хемосинтеза заключается в нейтрализации данных соединений. В науке известен такой термин, как "подземная биосфера". Ее формируют исключительно организмы, которым для жизни не нужны ни свет, ни кислород. Этим уникальным свойством обладают анаэробные бактерии.

Итак, в статье мы разобрались, что такое хемосинтез. Суть этого процесса заключается в окислении неорганических соединений. Хемосинтезирующими организмами являются некоторые виды прокариот: серо-, железобактерии и азотфиксирующие.

– это процесс синтеза органических веществ из неорганических за счет энергии света. Фотосинтез в растительных клетках идет в хлоропластах. Суммарная формула фотосинтеза:

6СО2 + 6Н2О + СВЕТ = С6Н2О6 + 6О2

Световая фаза фотосинтеза идет только на свету: квант света выбивает электрон из молекулы хлорофилла, лежащей во внутренней мембране тилакоида; выбитый электрон либо возвращается обратно, либо попадает на цепь окисляющихся друг друга ферментов. Цепь ферментов передает электрон на внешнюю сторону мембраны тилакоида к переносчику электронов. Мембрана заряжается отрицательно с наружной стороны.

Положительно заряженная молекула хлорофилла, лежащая в центре мембраны, окисляет ферменты, содержащие ионы марганца, лежащие на внутренней стороне мембраны. Эти ферменты участвуют в реакциях фотосинтеза воды, в результате которых образуется Н+; протоны выбрасываются на внутреннюю поверхность мембраны тилакоида, и на этой поверхности появляется положительный заряд. Когда разность потенциалов на мембране тилакоидов достигает 200 мВ, через АТФ – синтетазы начинают проскакивать протоны, за счет энергии движения которых синтезируется АТФ.

В темновую фазу из СО2 и атомарного водорода, связанного с переносчиками, синтезируется глюкоза за счет энергии АТФ. СО2 связывается с помощью фермента с рибулозодифосфатом, который превращается после этого в трехуглеродный сахар. Синтез глюкозы идет в матриксе тилакоидов. Суммарное уравнение темновой стадии.

6СО2 + 24Н = С6Н2О6 + 6Н2О

Тилакоид – вырост внутренней мембраны хлоропласта. Для темновых реакций в хлоропласт непрерывно поступают исходные вещества и энергия. Оксид углерода поступает в лист из окружающей атмосферы, водород образуется в световую фазу фотосинтеза в результате расщепления воды. Источником энергии служит АТФ, которая синтезируется в световую фазу фотосинтеза. Все эти вещества транспортируются в хлоропласт, где и осуществляется синтез углеводов.

Хемосинтез – синтез органических соединений за счет энергии реакций окисления неорганических соединений. Используется некоторыми группами бактерий. Способ, с помощью которого они мобилизуют энергию для синтетических реакций, принципиально иной, нежели у растительных клеток.

Этот тип обмена был открыт русским ученым микробиологом С. Н. . Бактрии обладают специальным ферментным аппаратом, позволяющим им преобразовывать энергию химических реакций, в частности энергию реакций окисления неорганических веществ, в энергию синтезируемых органических соединений. Из микроорганизмов, осуществляющих хемосинтез, важны азотфиксирующие и нитрифицирующие бактерии. Источником энергии у одной группы этих бактерий сложит реакция окисления аммиака в азотную кислоту. Другая группа использует энергию, выделяющуюся при окислении азотистой кислоты в азотную. Хемосинтез свойственен также для железобактерий и серобактерий. Первые из них используют энергию, освобождающуюся при окислении двухвалентного железа в трехвалентное; вторые окисляют сероводород до серной кислоты. Микроорганизмы очень важны, например, для повышения урожайности сельскохозяйственных культур, так как в результате жизнедеятельности этих бактерий азот (N2), находится в воздухе, недоступный для усвоения растениями, превращается в аммиак (NH3), который хорошо ими усваивается.

Фотосинтез и хемосинтез – два закономерных природных процесса преобразования энергии. На них стоит фундамент жизнедеятельности окружающей среды, включающей живые организмы и микроорганизмы.

Описание фотосинтеза

Фотосинтез – это процесс, производимый некоторыми бактериями, микроорганизмами и зелёными частями растений, для химического преобразования органических веществ из неорганических веществ с помощью воздействия энергии света. В процессе фотосинтеза выделяется кислород из углевода, поглощённого из атмосферы. Сам процесс фотосинтеза впервые был обнаружен в 1770 году Джозефом Пристли. Своё название этот термина получил из двух древнегреческих слов, означающих «свет» и «совмещение». Фотосинтез у разных организмов проходит по-разному и имеет свои особенности. Так, высшие растения используют пигмент – хлорофилл, а бактерии – бактериохлорофилл. Причём у растений при данном преобразовании выделяется кислород, который затем попадает в атмосферу.

Фотосинтез у растений происходит так: фотоны, которые излучаются солнцем, попадают в пигмент листа – молекулу хлорофилла. Далее процесс распределяется на разделённые кластеры, находящиеся в свою очередь в молекулах. Условно кластеры принято называть фотосистемой 1 и 2. В них проходят определённые процессы, скачкообразно возрастает энергия и передаётся молекулам хлорофилла. Кроме того, необходимо знать, что фотосинтез проходит в две стадии – световую и темновую. В результате проходящих химических реакций теряется несколько электронов хлорофилла и расщепляется вода. Электроны водорода из расщеплённой воды становятся на место потерянных электронов. После этого происходит перекидывание электронов по молекулярной цепочке с дальнейшим преобразованием. В конце концов, энергия, содержащаяся в двух кластерах, запасается в молекулах и дополнительно появляется одна молекула кислорода.

Описание хемосинтеза

Хемосинтез – это процесс выработки органических веществ из неорганических веществ за счёт энергии, полученной в результате химической реакции окисления таких соединений, как: сероводород, водород, аммиак и т.д. Производится он бактериями, не содержащими хлорофиллы. Этот способ получения энергии - своего рода приспособление в тех местах, где солнечный свет, а значит и солнечная энергия, недоступны. Например, проявление хемосинтеза наблюдается на дне водоёма. Хемосинтез был открыт в 1887 году С.Н. Виноградским.

Различия и свойства фотосинтеза и хемосинтеза

Отличительной особенностью хемосинтеза и фотосинтеза является тот факт, что у последнего главным «рычагом» для работы является свет, и выделяемая им энергия. Действующим же стимулом для процесса хемосинтеза являются химические реакции из веществ, находящихся в окружающей среде.

Фотосинтез и хемосинтез очень важны для круговорота природы. С их помощью одни вещества не поглощаются другими и не исчезают. Без процесса фотосинтеза атмосфера не обновлялась бы кислородом, без которого не может жить ни одно живое существо на нашей планете. Процесс фотосинтеза активно влияет на сельскохозяйственные культуры. При его нарушении или недостаточности, спровоцированной отсутствием солнца, существенно падает урожай. Хемосинтез оказывает своё поистине «сказочное» влияние на среду в зависимости от того, какие соединения берутся в обработку теми или иными бактериями. От состава соединений зависит эффект и результат процесса. Так, бактерии могут очистить водоём при условии, что там есть соединения серы и сероводород. Бактерии, использующие соединения аммиака и азотной кислоты для хемосинтеза, являются главной причиной плодородия почвы. Бактерии, окисляющие железные соединения, способствуют отложению полезных руд и металлов.

Выберите рубрику Биология Тесты по биологии Биология. Вопрос — ответ. Для подготовки к ЕНТ Учебно-методическое пособие по биологии 2008 г Учебная литература по биологии Биология-репетитор Биология. Справочные материалы Анатомия, физиология и гигиена человека Ботаника Зоология Общая биология Вымершие животные Казахстана Жизненные ресурсы человечества Действительные причины голода и нищеты на Земле и возможности их устранения Пищевые ресурсы Ресурсы энергии Книга для чтения по ботанике Книга для чтения по зоологии Птицы Казахстана. Том I География Тесты по географии Вопросы и ответы по географии Казахстана Тестовые задания, ответы по географии для поступающих в ВУЗы Тесты по географии Казахстана 2005 Информация История Казахстана Тесты по Истории Казахстана 3700 тестов по истории Казахстана Вопросы и ответы по истории Казахстана Тесты по истории Казахстана 2004 Тесты по истории Казахстана 2005 Тесты по истории Казахстана 2006 Тесты по истории Казахстана 2007 Учебники по истории Казахстана Вопросы историографии Казахстана Вопросы социально-экономического развития Советского Казахстана Ислам на территории Казахстана. Историография советского Казахстана (очерк) История Казахстана. Учебник для студентов и школьников. ВЕЛИКИЙ ШЕЛКОВЫЙ ПУТЬ НА ТЕРРИТОРИИ КАЗАХСТАНА И ДУХОВНАЯ КУЛЬТУРА В VI-XII вв. Древние государства на территории Казахстана: Уйсуны, Канглы, Хунну Казахстан в древности Казахстан в эпоху средневековья (XIII — 1 пол. XV вв.) Казахстан в составе Золотой Орды Казахстан в эпоху монгольского владычества Племенные союзы Саков и Сарматов Раннесредневековый Казахстан (VI-XII вв.) Средневековые государства на территории Казахстана в XIV-XV вв ХОЗЯЙСТВО И ГОРОДСКАЯ КУЛЬТУРА РАННЕСРЕДНЕВЕКОВОГО КАЗАХСТАНА (VI-XII вв.) Экономика и культура средневековых государств Казахстана XIII-XV вв. КНИГА ДЛЯ ЧТЕНИЯ ПО ИСТОРИИ ДРЕВНЕГО МИРА Религиозные верования. Распространение ислама Хунну: археология, происхождение культуры, этническая история Хуннский некрополь Шомбуузийн Бэльчээр в горах монгольского Алтая Школьный курс истории Казахстана Августовский переворот 19-21 августа 1991 года ИНДУСТРИАЛИЗАЦИЯ Казахско-китайские отношения в XIX веке Казахстан в годы застоя (60-80-е годы) КАЗАХСТАН В ГОДЫ ИНОСТРАННОЙ ИНТЕРВЕНЦИИ И ГРАЖДАНСКОЙ ВОЙНЫ (1918-1920 ГГ.) Казахстан в годы перестройки Казахстан в новое время КАЗАХСТАН В ПЕРИОД ГРАЖДАНСКОГО ПРОТИВОСТОЯНИЯ НАЦИОНАЛЬНО-ОСВОБОДИТЕЛЬНОЕ ДВИЖЕНИЕ 1916 ГОДА КАЗАХСТАН В ПЕРИОД ФЕВРАЛЬСКОЙ РЕВОЛЮЦИИ И ОКТЯБРЬСКОГО ПЕРЕВОРОТА 1917 г. КАЗАХСТАН В СОСТАВЕ СССР Казахстан во второй половине 40-х — середине 60-х годов. Общественно-политическая жизнь КАЗАХСТАНЦЫ В ВЕЛИКОЙ ОТЕЧЕСТВЕННОЙ ВОЙНЕ Каменный век Палеолит (древнекаменный век) 2,5 млн.-12 тыс. до н.э. КОЛЛЕКТИВИЗАЦИЯ МЕЖДУНАРОДНОЕ ПОЛОЖЕНИЕ НЕЗАВИСИМОГО КАЗАХСТАНА Национально-освободительные восстания Казахского народа в ХVIII-ХIХ вв. НЕЗАВИСИМЫЙ КАЗАХСТАН ОБЩЕСТВЕННО-ПОЛИТИЧЕСКАЯ ЖИЗНЬ В 30-е ГОДЫ. НАРАЩИВАНИЕ ЭКОНОМИЧЕСКОЙ МОЩИ КАЗАХСТАНА. Общественно-политическое развитие независимого Казахстана Племенные союзы и ранние государства на территории Казахстана Провозглашение суверенитета Казахстана Регионы Казахстана в раннем железном веке Реформы управления Казахстаном СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ В ХIХ-НАЧАЛЕ XX ВЕКА Средние века ГОСУДАРСТВА В ПЕРИОД РАСЦВЕТА СРЕДНЕВЕКОВЬЯ (Х-ХIII вв.) Казахстан в XIII-первой половине XV веков Раннесредневековые государства (VI-IX вв.) Укрепление Казахского ханства в XVI-XVII веках ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ: УСТАНОВЛЕНИЕ РЫНОЧНЫХ ОТНОШЕНИЙ История России ИСТОРИЯ ОТЕЧЕСТВА XX ВЕК 1917 ГОД НОВАЯ ЭКОНОМИЧЕСКАЯ ПОЛИТИКА ОТТЕПЕЛЬ ПЕРВАЯ РУССКАЯ РЕВОЛЮЦИЯ (1905-1907) ПЕРЕСТРОЙКА ПОБЕДИВШАЯ ДЕРЖАВА (1945-1953) РОССИЙСКАЯ ИМПЕРИЯ В МИРОВОЙ ПОЛИТИКЕ. ПЕРВАЯ МИРОВАЯ ВОЙНА РОССИЯ В НАЧАЛЕ XX ВЕКА Политические партии и общественные движения в начале XX века. РОССИЯ МЕЖДУ РЕВОЛЮЦИЕЙ И ВОЙНОЙ (1907-1914) СОЗДАНИЕ В СССР ТОТАЛИТАРНОГО ГОСУДАРСТВА (1928-1939) Обществознание Различные материалы по учебе Русский язык Тесты по русскому языку Вопросы и ответы по русскому языку Учебники по русскому языку Правила русского языка

Муравьёва Елена Леонтьевна
Должность: учитель биологии
Учебное заведение: МБОУ "СШ № 14"
Населённый пункт: город Евпатория Республика Крым
Наименование материала: конспект урока
Тема: "Сравнение процессов фотосинтеза и хемосинтеза"
Дата публикации: 03.03.2018
Раздел: полное образование

Биология 10 класс химико – биологического профиля.

Практическая работа № 4

Тема: «Сравнение процессов фотосинтеза и хемосинтеза»

Цель:

1) сравнить процессы фотосинтеза и хемосинтеза, особенности процессов фотосинтеза и

хемосинтеза;

2) выяснить значение фотосинтеза и хемосинтеза для биосферы.

Оборудование и материалы: методическое руководство по выполнению практической

работы №4 «Сравнение процессов фотосинтеза и хемосинтеза», «схемы, отражающие

суть процессов фотосинтеза и хемосинтеза в клетках организмов, презентация

«Фотосинтез.Хемосинтез».

Ход работы:

Рассмотрите предложенные схемы фотосинтеза и хемосинтеза в клетках.

Заполните таблицу «Сравнение процессов фотосинтеза и хемосинтеза».

Признаки для сравнения

Фотосинтез

Хемосинтез

Происхождение названия.

Где в клетке происходит.

Наличие световой и темновой фазы

процесса.

Источник энергии для осуществления

этих процессов.

В каком веществе запасается энергия.

Наличие пигментов.

Использование кислорода.

Источник углеводов.

Конечные продукты реакций.

Характерен для организмов.

К какому Царству относятся

организмы.

Способ питания организмов.

Уравнения реакций.

Фамилия учёного открывшего процесс

Биологическая роль процесса.

Определение данных процессов.

Значение процессов в биосфере.

Установить соответствия:

А). Окисляют аммиак

В). Окисляют двухвалентное железо до трехвалентного

E (энергия)

Е). Окисление водорода до органических веществ

З). Окисляют сероводород до молекулярной серы или до солей серной кислот

1. Железобактерии 2. Водородные бактерии

3. Серобактерии

3. Нитрофицирующие бактерии.

4. Решить задачи:

1) Определите массу образованного при фотосинтезе кислорода, если при этом процессе

синтезировано 45 г глюкозы. Молекулярная масса глюкозы равна 180, молекулярная масса

кислорода – 32.

2) За сутки один человек массой 60 кг при дыхании потребляет в среднем 30 л кислорода

(из расчета 200 см

на 1 кг массы за 1 час). Одно 25-летнее дерево – тополь – в процессе

фотосинтеза за 5 весенне-летних месяцев поглощает около 42 кг углекислого газа.

Определите, сколько таких деревьев обеспечат кислородом одного человека.

3) Сколько глюкозы, синтезируемой в процессе фотосинтеза, приходится на каждого из 6

млрд жителей Земли в год? За год вся растительность планеты производит около 130 000

млн т сахаров.

Выполнить тестовые задания:

Вариант 1.

А1. Фотосинтез связан с:

4) образованием целлюлозы

А2. Исходным материалом для фотосинтеза служат

1) белки и углеводы

2) углекислый газ и вода

3) кислород и АТФ

4) глюкоза и кислород

А3. Световая фаза фотосинтеза происходит

1) в гранах хлоропластов

2) в лейкопластах

3) в строме хлоропластов

4) в митохондриях

А4. Энергия возбужденных электронов в световой стадии используется для:

1) синтеза АТФ

2) синтеза глюкозы

3) синтеза белков

4) расщепления углеводов

А5. В результате фотосинтеза в хлоропластах образуются:

1) углекислый газ и кислород

2) глюкоза, АТФ и кислород

3) белки, жиры, углеводы

4) углекислый газ, АТФ и вода

А6. К хемотрофным организмам относятся

1) возбудители туберкулеза

2) молочнокислые бактерии

3) серобактерии

А7. Фотосинтез связан с:

1) расщеплением органических веществ до неорганических

2) созданием органических веществ из неорганических

3) химическим превращения глюкозы в крахмал

4) образованием целлюлозы

А8. Исходным материалом для фотосинтеза служат

1) белки и углеводы

2) углекислый газ и вода

3) кислород и АТФ

4) глюкоза и кислород

А9. Световая фаза фотосинтеза происходит

1) в гранах хлоропластов

2) в лейкопластах

3) в строме хлоропластов

4) в митохондриях

1) фотолиз воды

2) образование глюкозы

3) синтез АТФ и НАДФ Н

4) использование СО2

5) образование О2

6) использование энергии АТФ

1) целлюлоза

2) гликоген

3) хлорофилл

6) нуклеиновые кислоты

Вариант 2 .

А1. Энергия возбужденных электронов в световой стадии используется для:

1) синтеза АТФ

2) синтеза глюкозы

3) синтеза белков

4) расщепления углеводов

А2. В результате фотосинтеза в хлоропластах образуются:

1) углекислый газ и кислород

2) глюкоза, АТФ и кислород

3) белки, жиры, углеводы

4) углекислый газ, АТФ и вода

А3. К хемотрофным организмам относятся

1) возбудители туберкулеза

2) молочнокислые бактерии

3) серобактерии

А4. Организмы, способные фотосинтезу относят к:

1) хемоавтотрофам;

2) фотоавтотрофам;

3) миксотрофам;

4) гетеротрофам

А5. Биологический смысл процесса фотосинтеза состоит в образовании:

1) нуклеиновых кислот;

2) белков;

3) углеводов;

А6. Какие из перечисленных организмов способны к фотосинтезу?

1) пеницилл и дрожжи;

2) ольха и серобактерии;

3) инфузория и эвглена зелёная;

4) клён и цианобактерии

А7. Кислород, выделяющийся при фотосинтезе, образуется при распаде:

1) глюкозы;

4) белков.

А8. Какие лучи солнечного спектра используются растениями для фотосинтеза?

1) красные и зелёные;

2) красные и синие;

3) зеленые и синие;

А9. Какие пластиды содержат пигмент хлорофилл?

1) лейкопласты;

2) хлоропласты;

3) хромопласты;

4) все пластиды.

В1. Выберите процессы, происходящие в световой фазе фотосинтеза

1) фотолиз воды

2) образование глюкозы

3) синтез АТФ и НАДФ Н

4) использование СО2

5) образование О2

6) использование энергии АТФ

В2. Выберите вещества, участвующие в процессе фотосинтеза

1) целлюлоза

2) гликоген

3) хлорофилл

6) нуклеиновые кислоты

2024 teploblok29.ru. Строительный портал - Teploblok29.