Испытания на воздействие ударных нагрузок. Сочетание ускорений и длительности ударного импульса Биомеханика ударных действий

В механике ударом называют механическое воздействие материальных тел, приводящее к конечному изменению скоростей их точек за бесконечно малый промежуток времени. Ударное движение — движение, возникающее в результате однократного взаимодействия тела (среды) с рассматриваемой системой при условии, что наименьший период собственных колебаний системы или ее постоянная времени соизмеримы или больше времени взаимодействия.

При ударном взаимодействии в рассматриваемых точках определяют ударные ускорения, скорость или перемещение. В совокупности такие воздействия и реакции называют ударными процессами. Механические удары могут быть одиночными, многократными и комплексными. Одиночные и многократные ударные процессы могут воздействовать на аппарат в продольном, поперечном и любом промежуточном направлениях. Комплексные ударные нагрузки оказывают воздействие на объект в двух или трех взаимно перпендикулярных плоскостях одновременно. Ударные нагрузки на ЛА могут быть как непериодическими, так и периодическими. Возникновение ударных нагрузок связано с резким изменением ускорения, скорости или направления перемещения ЛА. Наиболее часто в реальных условиях встречается сложный одиночный ударный процесс, представляющий собой сочетание простого ударного импульса с наложенными колебаниями.

Основные характеристики ударного процесса:

  • законы изменения во времени ударного ускорения a(t), скорости V(t) и перемещения X(t) \ длительность действия ударного ускорения т - интервал времени от момента появления до момента исчезновения ударного ускорения, удовлетворяющий условию, а> ап, где ап - пиковое ударное ускорение;
  • длительность фронта ударного ускорения Тф - интервал времени от момента появления ударного ускорения до момента, соответствующего его пиковому значению;
  • коэффициент наложенных колебаний ударного ускорения - отношение полной суммы абсолютных значений приращений между смежными и экстремальными значениями ударного ускорения к его удвоенному пиковому значению;
  • импульс ударного ускорения - интеграл от ударного ускорения за время, равное длительности его действия.

По форме кривой функциональной зависимости параметров движения ударные процессы разделяют на простые и сложные. Простые процессы не содержат высокочастотных составляющих, и их характеристики аппроксимируются простыми аналитическими функциями. Наименование функции определяется формой кривой, аппроксимирующей зависимость ускорения от времени (полусинусоидальная, косанусоидальная, прямоугольная, треугольная, пилообразная, трапецеидальная и т.д.).

Механический удар характеризуется быстрым выделением энергия, в результате чего возникают местные упругие или пластические деформации, возбуждение волн напряжения и другие эффекты, приводящие иногда к нарушению функционирования и к разрушению конструкции ЛА. Ударная нагрузка, приложенная к ЛА, возбуждает в нем быстро затухающие собственные колебания. Значение перегрузки при ударе, характер и скорость распределения напряжений по конструкции ЛА определяются силой и продолжительностью удара, и характером изменения ускорения. Удар, воздействуя на ЛА, может вызвать его механическое разрушение. В зависимости от длительности, сложности ударного процесса и его максимального ускорения при испытаниях определяют степень жесткости элементов конструкции ЛА. Простой удар может вызвать разрушение вследствие возникновения сильных, хотя и кратковременных перенапряжений в материале. Сложный удар может привести к накоплению микродеформации усталостного характера. Так как конструкция ЛА обладает резонансными свойствами, то даже простой удар может вызвать колебательную реакцию в ее элементах, также сопровождающуюся усталостными явлениями.


Механические перегрузки вызывают деформацию и поломку деталей, ослабление соединений (сварных, резьбовых и заклепочных), отвинчивание винтов и гаек, перемещение механизмов и органов управления, в результате чего изменяется регулировка и настройка приборов и появляются другие неисправности.

Борьба с вредным действием механических перегрузок ведется различными путями: увеличением прочности конструкции, использованием деталей и элементов с повышенной механической прочностью, применением амортизаторов и специальной упаковки, рациональным размещением приборов. Меры защиты от вредного воздействия механических перегрузок делят на две группы:

  1. меры, направленные на обеспечение требуемой механической прочности и жесткости конструкции;
  2. меры, направленные на изоляцию элементов конструкции от механических воздействий.

В последнем случае применяют различные амортизирующие средства, изолирующие прокладки, компенсаторы и демпферы.

Общая задача испытаний ЛА на воздействие ударных нагрузок состоит в проверке способности ЛА и всех его элементов выполнять свои функции в процессе ударного воздействия и после него, т.е. сохранять свои технические параметры при ударном воздействии и после него в пределах, указанных в нормативно-технических документах.

Основные требования при ударных испытаниях в лабораторных условиях — максимальная приближенность результата испытательного удара на объект к эффекту реального удара в натурных условиях эксплуатации и воспроизводимость ударного воздействия.

При воспроизведении в лабораторных условиях режимов ударного нагружения накладывают ограничения на0форму импульса мгновенного ускорения как функции времени (рис. 2.50), а также на допустимые пределы отклонений формы импульса. Практически каждый ударный импульс на лабораторном стенде сопровождается пульсацией, являющейся следствием резонансных явлений в ударных установках и вспомогательном оборудовании. Так как спектр ударного импульса в основном является характеристикой разрушающего действия удара, то наложенная даже небольшая пульсация может сделать результаты измерений недостоверными.

Испытательные установки, имитирующие отдельные удары с последующими колебаниями, составляют специальный класс оборудования для механических испытаний. Ударные стенды можно классифицировать по различным признакам (рис. 2.5!):

I — по принципу формирования ударного импульса;

II — по характеру испытаний;

III — по виду воспроизводимого ударного нагружения;

IV — по принципу действия;

V — по источнику энергии.

В общем виде схема ударного стенда состоит из следующих элементов (рис. 2.52): испытуемого объекта, укрепленного на платформе или контейнере вместе с датчиком ударной перегрузки; средства разгона для сообщения объекту необходимой скорости; тормозного устройства; системы управления; регистрирующей аппаратуры для записей исследуемых параметров объекта и закона изменения ударной перегрузки; первичных преобразователей; вспомогательных приборов для регулировки режимов функционирования испытуемого объекта; источников питания, необходимых для работы испытуемого объекта и регистрирующей аппаратуры.

Простейшим стендом для ударных испытаний в лабораторных условиях является стенд, работающий по принципу сбрасывания закрепленного на каретке испытуемого объекта с некоторой высоты, т.е. использующий для разгона силы земного тяготения. При этом форма ударного импульса определяется материалом и формой соударяющихся поверхностей. На таких стендах можно обеспечить ускорение до 80000 м/с2. На рис. 2.53, а и б приведены принципиально возможные схемы таких стендов.

В первом варианте (рис. 2.53, а) специальный кулачок 3 с храповым зубом приводится во вращение мотором. По достижении кулачком максимальной высоты H стол 1 с объектом испытания 2 падает на тормозные устройства 4, которые и сообщают ему удар. Ударная перегрузка зависит от высоты падения Н, жесткости тормозящих элементов к, суммарной массы стола и объекта испытания M и определяется следующей зависимостью:

Варьируя эта величины, можно получить различные перегрузки. Во втором варианте (рис. 2.53, б) стенд работает по методу сбрасывания.

Испытательные стенды, использующие гидравлический либо пневматический привод для разгона каретки, практически не зависят от действия гравитации. На рис. 2.54 показаны два варианта ударных пневматических стендов.

Принцип работы стенда с пневмопушкой (рис. 2.54, а) заключается в следующем. В рабочую камеру / подается сжатый газ. При достижении заданного давления, которое контролируется манометром, срабатывает автомат 2 освобождения контейнера 3, где размещен испытуемый объект. При выходе из ствола 4 пневмопушки контейнер контактирует с устройством 5, которое позволяет измерять скорость движения контейнера. Пневмопушка через амортизаторы крепится к опорным стойкам б. Заданный закон торможения на амортизаторе 7 реализуется за счет изменения гидравлического сопротивления перетекающей жидкости 9 в зазоре между специально спрофилированной иглой 8 и отверстием в амортизаторе 7.

Конструктивная схема другого пневматического ударного стенда, (рис. 2.54, б) состоит из объекта испытаний 1, каретки 2, на которой установлен объект испытаний, прокладки 3 и тормозного устройства 4, клапанов 5, позволяющих создавать заданные перепады давления газа на поршне б, и системы подачи газа 7. Тормозное устройство включается сразу же после соударения каретки и прокладки, чтобы предотвратить обратный ход каретки и искажение форм ударного импульса. Управление такими стендами может быть автоматизировано. На них можно воспроизвести широкий диапазон ударных нагрузок.

В качестве разгонного устройства могут быть использованы резиновые амортизаторы, пружины, а также, в отдельных случаях, линейные асинхронные двигатели.

Возможности практически всех ударных стендов определяются конструкцией тормозных устройств:

1. Удар испытуемого объекта с жесткой плитой характеризуется торможением за счет возникновения упругих сил в зоне контакта. Такой способ торможения испытуемого объекта позволяет получать большие значения перегрузок с малым фронтом их нарастания (рис. 2.55, а).

2. Для получения перегрузок в широком диапазоне, от десятков до десятков тысяч единиц, с временем нарастания их от десятков микросекунд до нескольких миллисекунд используют деформируемые элементы в виде пластины или прокладки, лежащей на жестком основании. Материалами этих прокладок могут быть сталь, латунь, медь, свинец, резина и т.д. (рис. 2.55, б).

3. Для обеспечения какого-либо конкретного (заданного) закона изменения п и т в небольшом диапазоне используют деформируемые элементы в виде наконечника (крешера), который устанавливается между плитой ударного стенда и испытуемым объектом (рис. 2.55, в).

4. Для воспроизведения удара с относительно большим путем торможения применяют тормозное устройство, состоящее из свинцовой, пластически деформируемой плиты, расположенной на жестком основании стенда, и внедряющегося в нее жесткого наконечника соответствующего профиля (рис. 2.55, г), закрепленного на объекте или платформе стенда. Такие тормозные устройства позволяют получать перегрузки в широком диапазоне n(t) с небольшим временем их нарастания, доходящим до десятков миллисекунд.

5. В качестве тормозного устройства может быть использован упругий элемент в виде рессоры (рис. 2.55, д), установленной на подвижной части ударного стенда. Такой вид торможения обеспечивает получение относительно малых перегрузок полусинусоидальной формы с продолжительностью, измеряемой миллисекундами.

6. Пробиваемая металлическая пластина, закрепленная по контуру в основании установки, в сочетании с жестким наконечником платформы или контейнера, обеспечивает получение относительно малых перегрузок (рис. 2.55, е).

7. Деформируемые элементы, установленные на подвижной платформе стенда (рис. 2.55, ж), в сочетании с жестким коническим уловителем обеспечивают получение длительно действующих перегрузок с временем нарастания до десятков миллисекунд.

8. Тормозное устройство с деформируемой шайбой (рис. 2.55, з) позволяет получать большие пути торможения объекта (до 200 — 300 мм) при малых деформациях шайбы.

9. Создание в лабораторных условиях интенсивных ударных импульсов с большими фронтами возможно при использовании пневматического тормозного устройства (рис. 2.55, ы). К числу достоинств пневмодемпфера следует отнести его многоразовое действие, а также возможность воспроизведения ударных импульсов различной формы, в том числе и со значительным заданным фронтом.

10. В практике проведения ударных испытаний широкое применение получило тормозное устройство в виде гидравлического амортизатора (см. рис. 2.54, а). При ударе испытуемого объекта об амортизатор его шток погружается в жидкость. Жидкость выталкивается через очко штока по закону, определяемому профилем регулирующей иглы. Изменяя профиль иглы, можно реализовать различный вид закона торможения. Профиль иглы можно получить расчетным путем, но при этом слишком трудно учесть, например, наличие воздуха в полости поршня, силы трения в уплотнительных устройствах и т.д. Поэтому расчетный профиль необходимо экспериментально корректировать. Таким образом, расчетно-экспериментальным методом можно получить профиль, необходимый для реализации любого закона торможения.

Проведение ударных испытаний в лабораторных условиях выдвигает и ряд специальных требований к монтажу объекта. Так, например, максимально допустимое перемещение в поперечном направлении не должно превышать 30% номинальной величины; как при испытаниях на ударную устойчивость, так и при испытаниях на ударную прочность изделие должно иметь возможность устанавливаться в трех взаимно перпендикулярных положениях с воспроизведением необходимого количества ударных импульсов. Разовые характеристики измерительного и регистрирующего оборудования должны быть идентичными в широком диапазоне частот, что гарантирует правильную регистрацию соотношений различных частотных составляющих измеряемого импульса.

Вследствие разнообразия передаточных функций различных механических систем один и тот же ударный спектр может быть вызван ударным импульсом различной формы. Это означает, что не существует однозначного соответствия некоторой временной функции ускорения и ударного спектра. Поэтому с технической точки зрения более правильно задавать технические условия на ударные испытания, содержащие требования к ударному спектру, а не к временной характеристике ускорения. В первую очередь это относится к механизму усталостного разрушения материалов вследствие накопления циклов нагружений, которые могут быть различными от испытаний к испытанию, хотя пиковые значения ускорения и напряжения будут оставаться постоянными.

При моделировании ударных процессов системы определяющих параметров целесообразно составлять по выявленным факторам, необходимых для достаточно полного определения искомой величины, которую иногда можно найти только экспериментальным путем.

Рассматривая удар массивного, свободно движущегося жесткого тела по деформируемому элементу относительно малого размера (например, по тормозному устройству стенда), закрепленному на жестком основании, требуется определить параметры ударного процесса и установить условия, при которых такие процессы будут подобными друг другу. В общем случае пространственного движения тела можно составить шесть уравнений, три из которых дает закон сохранения количества движения, два — законы сохранения массы и энергии, шестым является уравнение состояния. В указанные уравнения входят следующие величины: три компоненты скорости Vx Vy \ Vz> плотность р, Давление р и энтропия. Пренебрегая диссипативными силами и считая состояние деформируемого объема изоэнтропическим, можно исключить из числа определяющих параметров энтропию. Так как рассматривается только движение центра масс тела, то можно не включать в число определяющих параметров компоненты скоростей Vx, Vy; Vz и координаты точек Л", Y, Z внутри деформируемого объекта. Состояние деформируемого объема будет характеризоваться следующими определяющими параметрами:

  • плотностью материала р;
  • давлением р, которое целесообразней учитывать через величину максимальной местной деформации и Otmax, рассматривая ее как обобщенный параметр силовой характеристики в зоне контакта;
  • начальной скоростью удара V0, которая направлена по нормали к поверхности, на которой установлен деформируемый элемент;
  • текущим временем t;
  • массой тела т;
  • ускорением свободного падения g;
  • модулем упругости материалов Е, так как напряженное состояние тела при ударе (за исключением зоны контакта) считается упругим;
  • характерным геометрическим параметром тела (или деформируемого элемента) D.

В соответствии с тс-теоремой, из восьми параметров, среди которых три имеют независимые размерности, можно составить пять независимых безразмерных комплексов:

Безразмерные комплексы, составленные из определяемых параметров ударного процесса, будут некоторыми функциями независимы] безразмерных комплексов П1 — П5.

К числу определяемых параметров относятся:

  • текущая местная деформация а;
  • скорость тела V;
  • контактная сила Р;
  • напряжение внутри тела а.

Следовательно, можно записать функциональные соотношения:

Вид функций /1, /2, /э, /4 может быть установлен экспериментально, с учетом большого количества определяющих параметров.

Если при ударе в сечениях тела за пределами зоны контакта не появляются остаточные деформации, то деформация будет иметь местный характер, и, следовательно, комплекс Я5 = рУ^/Е можно исключить.

Комплекс Jl2 = Pttjjjax) ~ Cm называется коэффициентом относительной массы тела.

Коэффициент силы сопротивления пластическому деформированию Cp связан непосредственно с показателем силовой характеристики N (коэффициентом податливости материала, зависящим от формы соударяющихся тел) следующей зависимостью:

где р — приведенная плотность материалов в зоне контакта; Cm = т/(ра?) — приведенная относительная масса соударяющихся тел, характеризующая отношение их приведенной массы M к приведенной массе деформируемого объема в зоне контакта; xV — безразмерный параметр, характеризующий относительную работу деформирования.

Функцией Cp - /з(Я1(Яг, Я3, Я4) можно воспользоваться для определения перегрузок:

Если обеспечить равенство числовых значений безразмерных комплексов IJlt Я2, Я3, Я4 для двух ударных процессов, то эти условия, т.е.

будут представлять собой критерии подобия данных процессов.

При выполнении указанных условий одинаковыми будут и числовые значения функций /ь/г./з» Л» те- в сходственные моменты времени -V CtZoimax- const; ^r= const; Cp = const, что и позволяет определять параметры одного ударного процесса простым пересчетом параметров другого процесса. Необходимые и достаточные требования физического моделирования ударных процессов можно сформулировать следующим образом:

  1. Рабочие части модели и натурного объекта должны быть геометрически подобными.
  2. Безразмерные комплексы, составленные из определяющих пара, метров, должны удовлетворять условию (2.68). Вводя масштабные коэффициенты.

Необходимо иметь в виду, что при моделировании только параметров ударного процесса напряженные состояния тел (натуры и модели) будут обязательно различными.

Явление, при котором за ничтожно малый промежуток времени скорости точек изменяются на конечную величину, называется ударом .

Конечное изменение количества движения за ничтожно малый промежуток времени удара происходит потому, что модули сил, развиваемых при ударе, весьма велики, из-за чего импульсы этих сил за время удара являются конечными величинами. Такие силы называются мгновенными или ударными.

Пусть на движущуюся под действием приложенных сил с равнодействующей Р к МТ М в некоторое мгновение действует ударная сила Р , прекратившая свое действие в момент времени t 2 = t 1 + t , где t - время удара.

По теореме изменения количества движения МТ

m u 2 - m u 1 = S + S к, (а)

где S , S к - соответственно, импульсы сил Р и Р к.

Импульс равнодействующей за малый промежуток времени имеет порядок малости, что и t , а импульс S ударной силы P является конечной величиной. Поэтому S к можно пренебречь. Тогда уравнение (а) примет вид

m u 2 - m u 1 = S (16-1)

u 2 - u 1 = S/ m. (16-2)

Т.к. продолжительность удара мала, а скорость точки за это время конечна, то перемещение точки за время удара мало, и им можно пренебречь.

В положении В, где точка получает удар, конечное изменение скорости составляет

D u = u 1 - u 2 .

Поэтому в положении В происходит резкое изменение траектории точки ABD (рис.16.1).

После прекращения действий силы Р точка снова движется под действием равнодействующей Р к.

Следовательно:

1) действием немгновенных сил за время удара можно пренебречь;

2) перемещение МТ за время удара можно не учитывать;

3) результат действия ударной силы за время удара на МТ выражается в конечном изменении вектора ее скорости, определяемом уравнением (16-2).

Пусть к точкам механической системы одновременно приложены ударные импульсы. На основании предыдущего действием конечных сил за время удара будем пренебрегать. Разделим ударные силы на внутренние и внешние. Тогда для каждой точки можно записать

m i (u i - u i) = S E i + S J i (i=1,2….n).

После суммирования

Sm i u i - Sm i u i = S S E i + S S J i .

Здесь Sm i u i =К - количество движения механической системы в момент окончания действия ударных сил; Sm i u i = К 0 - количество движения механической системы в момент начала действия ударных сил.

Т.к. сумма внутренних сил равна нулю, то

К - К 0 = S S E i . (16-3)

Это уравнение выражает теорему:

Изменение количества движения механической системы за время удара равно геометрической сумме всех внешних ударных импульсов, приложенных к точкам системы .

Уравнению (16-3) соответствуют три уравнения в проекциях на оси координат.

К x К x0 = SS E ix ; К y К y0 = SS E iy ; К z К z0 = SS E iz . (16-4)

Изменение проекции количества движения системы на любую ось равна сумме проекций на ту же ось внешних ударных импульсов, приложенных к системе .

Количество движения можно выразить через массу всей системы

K = mu C , K 0 = m u C .

mu C - m u C = S S E i . (16-5)

Этому,аналогично предыдущему, можно написать три уравнения в проекциях на оси координат.

При отсутствии внешних ударных импульсов

S E i =0; К=К 0 ; u C =u C .

От внутренних ударных импульсов количество движения системы не изменяется .

16.2. Удар шара о неподвижную поверхность .

Пусть шар массой m движется поступательно и скорость его центра u направлена по нормали к неподвижной поверхности в некоторой ее точке А (рис.16.2)

В мгновение t , когда шар достигает этой поверхности, происходит удар, называемый прямым.

Различают две фазы удара. В первой шар деформируется до тех пор, пока скорость его не станет равной нулю. Эта деформация происходит за ничтожно малый промежуток времени t 1 . Во время этой фазы кинетическая энергия шара переходит в потенциальную энергию сил упругости деформированного тела и частично расходуется на нагревание тела.

В течение второй фазы удара под действием сил упругости шар частично восстанавливает свою первоначальную форму. Этот промежуток времени обозначим t 2 .

Из-за остаточных деформаций и нагревания шара первоначальная кинетическая энергия шара полностью не восстанавливается. Поэтому шар отделяется от поверхности со скоростью u , модуль которой меньше модуля его скорости до удараu .

Отношение модулей этих скоростей называют коэффициентом восстановления при ударе

k=|u|/|u|. (16-6)

Значения коэффициента восстановления для различных материалов определяются опытным путем. В расчетах обычно принимают коэффициент восстановления зависящим лишь от материала соударяющихся тел. Однако опыты показывают, что этот коэффициент зависит и от формы тел, от соотношения их масс и от скорости соударения.

Коэффициент восстановления для стального шарика можно определить по высоте отскока шарика.

Применяя к движению шарика под действием силы тяжести теорему об изменении кинетической энергии, можно определить скорость в начале удара

u= (2gh 1) 1/2 .

По той же теореме для участка отскока получим

u=(2gh 2) 1/2 .

Тогда коэффициент восстановления будет

k= u/u= (h 2 /h 1) 1/2 . (16-7)

В случае неупругого удара явление удара заканчивается первой фазой. Здесь u=0, k=0.

Если обозначить переменную ударную реакцию в первой фазе N 1 , а N 11 - вовторой фазе, то модули импульсов этой силы, соответственно будут

S 1 = ; S 2 = .

Применим теорему об изменении количества движения МТ в проекциях на нормаль к поверхности, направленную вертикально вверх (рис. 16.3), учитывая, что скорость шарика в конце первой и начале второй фаз равна нулю:

Рис. 16.3 Рис. 16.4

0- mu n = S 1n ; mu n - 0= S 11n .

Представив значения проекций в виде u n =-u; u n = -u, S 1 n = S 1 ; S 11 n = S 11 ,

mu = S 1 ; mu = S 11 .

Отношения модулей импульсов

S 1 / S 11 = mu / mu = u / u = k. (16-8)

Т.о., отношение модулей импульсов ударной реакции гладкой поверхности за вторую и первую фазу удара равно коэффициенту восстановления при ударе.

Рассмотрим случай, когда падение происходит под углом a к нормали. Для этого положим, что векторы взаимодействия лежат в плоскости чертежа (рис. 16.4).

Спроектируем вектор скорости u на нормаль и касательную в этой плоскости. При отсутствии трения реакция поверхности направлена по нормали и ее проекция на касательную Аt равна нулю. На основании теоремы о проекции количества движения

mu t - mu t = 0 или u t = u t .

Изменение нормальной составляющей скорости при ударе происходит согласно формуле (16-6). Поэтому

|u n |= k|u n |, (16-9)

где |u n |, |u n | - абсолютные значения проекций скоростей u и u на нормаль.

Модуль скорости u центра шара после удара

u= (u t 2 +u n 2) 1/2 =(u t 2 +ku n 2) 1/2 =[(usin a) 2 +(kucos a) 2 ] 1/2 =

= u(sin 2 a+ k 2 cos 2 a) 1/2 . (16-10)

Угол падения

tg a= u t /|u n |; tg b= u t /|u n |= u t /(k|u n |)=k -1 tga. (16-11)

Поскольку k<1, то

tg b>tga и b> a ,

т.е. угол отражения больше угла падения.

В случае абсолютно твердого тела угол отражения равен углу падения.

16.3. Прямой центральный удар двух тел .

Пусть при поступательном прямолинейном движении двух тел массами m 1 , m 2 с центрами тяжести С 1 и С 2 движутся вдоль одной и той же прямой со скоростями u 1 и u 2 . Если второе тело находится впереди и u 1 > u 2 , то в некоторый момент времени первое тело нагонит второе и произойдет удар тел.

На рис. 16.5,а изображен такой удар двух шаров, при котором скорости тел в начале удара направлены по общей нормали к поверхностям в точке соприкосновения.

Такой удар называется прямым центральным ударом двух тел .

Определим, пользуясь теоремой импульсов, скорости этих тел после удара. От мгновения t соприкосновения тел происходит их смятие до тех пор, пока скорости не сравняются. Общую скорость в момент наибольшей деформации t 1 = t+ t 1 обозначим u . Если тела совершенно неупругие, то удар неупругий, и с этого мгновения оба тела будут двигаться как одно целое.

Удар упругих тел не заканчивается в мгновение, когда скорости тел сравняются. Начиная с этого мгновения, происходит восстановление первоначальной формы тел за счет накопившейся в них потенциальной энергии упругой деформации.

В некоторое мгновение t 1 = t+ t 1 тела отделяются, имея разные скорости u 1 , u 2 , направленные также как и скорости до соударения по общей нормали к поверхностям касания в точке.

В течение 1-й фазы продолжительностью t 1 к телам приложены взаимные ударные реакции, равные по модулю и направленные по оси х , проведенной по общей нормали, в противоположные стороны (рис.16.5,б).

Импульс ударной реакции, действующей на 1-е тело, S 1 направлен в сторону, обратную направлению оси х , а импульс реакции, приложенной ко 2-му телу S’ 1 , имеет направление оси х . Модули импульсов равны.

Силы взаимодействия соударяющихся тел являются для рассматриваемой системы внутренними силами. Поэтому, согласно уравнению (16-3) количество движения системы при ударе не изменяется.

Приравниваем значения проекций на ось х количества движения системы тел в начале удара и в момент наибольшей деформации

m 1 u 1 + m 2 u 2 = (m 1 + m 2)u.

u= (m 1 u 1 + m 2 u 2)/ (m 1 + m 2). (16-12)

Для определения импульсов ударных сил взаимодействия воспользуемся уравнением (16-5), учитывая, что для каждого тела в отдельности эти импульсы являются внешними:

Для 1-го тела

m 1 (u- u 1)= - S 1 ,

для 2-го тела (16-13)

m 2 (u- u 2)= S’ 1 .

Подставив в первое равенство (16-12), найдем модули ударных импульсов первой фазы:

S 1 = m 2 [(m 1 u 1 + m 2 u 2)/ (m 1 + m 2)-u 2 ]= m 1 m 2 (u 1 - u 2)/(m 1 + m 2). (16-14)

Обратимся ко 2-й фазе упругого удара от момента наибольшей деформации t+ t 1 до момента t+ t 1 + t 2 полного или частичного восстановления и отделения тел друг от друга. Обозначим S 11 , S’ 11 импульсы ударных реакций соударяющихся тел за время t 2 . Их направления совпадают с направлениями соответствующих ударных импульсов 1-й фазы удара. Проекции u 1 , u 2 скоростей тел в конце удара на ось определим по уравнению (16-5) для 2-й фазы удара

m 1 (u 1 - u)= - S 11 ,

m 2 (u 2 - u)= S’ 11 . (16-15)

Разделим 1-е уравнение на 1-е уравнение системы (16-13), а второе уравнение на 2-е уравнение (16-13)

(u 1 - u)/ (u- u 1)= k ; (u 2 - u)/ (u- u 2)= k.

u 1 =u+ k(u- u 1)=u(1+k)- ku 1 ;

u 2 =u+ k(u- u 2)=u(1+k)- ku 2 . (16-16)

Подставляя значения u, окончательно получим

u 1 =u 1 - (1+k)m 2 (u 1 -u 2)/(m 1 +m 2),

u 2 =u 2 + (1+k)m 1 (u 1 -u 2)/(m 1 +m 2). (16-17)

Поскольку внутренние силы не изменяют количества движения системы, то за время удара оно остается неизменным, т.е.

m 1 u 1 + m 2 u 2 = m 1 u 1 + m 2 u 2 . (16-18)

Из формул (16-16)

(u 2 - u)= k (u 1 - u 2) .

k =(u 2 - u)/ (u 1 - u 2). (16-19)

Коэффициент восстановления при ударе двух тел равен отношению модулей относительной скорости тел после удара и до него .

Определим модуль ударного импульса, приложенного к каждому телу, за весь период упругого удара:

S= S 1 + S 11 .

Подставим значения импульсов из вторых уравнений (16-13), (16-15)

S= S’= m 2 (u 2 - u 2)= m 2 =

= m 2 (1-k)(u-u 2)= (1+k)S 1 .

Применим формулу (16-14)

S= (1+k)m 1 m 2 (u 1 -u 2)/(m 1 +m 2). (16-20)

На основании установленных здесь общих формул получим формулы для определения скоростей тел после удара и ударных импульсов в случае неупругого и абсолютно упругого ударов.

При неупругом ударе k =0. Удар имеет только первую фазу. В этом случае после удара тела движутся совместно со скоростью

u= (m 1 u 1 + m 2 u 2)/(m 1 + m 2).

Модуль ударного импульса

S 1 = S’ 1 = m 1 m 2 (u 1 -u 2)/(m 1 +m 2).

При абсолютно упругом ударе k =1. В этом случае формулы (16-16), определяющие скорости тел после удара, принимают вид

u 1 = 2u- u 1 = 2 (m 1 u 1 + m 2 u 2)/(m 1 + m 2)- u 1 = u 1 - 2m 2 (u 1 -u 2)/(m 1 +m 2);

u 2 = 2u- u 2 = 2 (m 1 u 1 + m 2 u 2)/(m 1 + m 2)- u 2 = u 2 - 2m 1 (u 1 -u 2)/(m 1 +m 2). (16-17)

Формула (16-20) за весь период абсолютно упругого удара будет

S=S’ = 2m 1 m 2 (u 1 -u 2)/(m 1 +m 2). (16-21)

Из формул (16-16), (16-20) следует, что при абсолютно упругом ударе ударный импульс вдвое больше, чем при неупругом ударе .

Это объясняется тем, что при абсолютно упругом ударе к импульсу фазы деформации добавляется импульс фазы восстановления такого же модуля.

Если изделия имеют амортизаторы, то при выборе длительности действия ударного ускорения учитывают низшие резонансные частоты самих изделий, а не элементов защиты.

В качестве проверяемых выбирают параметры, по изменению которых можно судить об ударной устойчивости РЭА в целом (искажение выходного сигнала, стабильность характеристик функционирования и т.д.).

При разработке программы испытаний направления воздействий ударов устанавливают в зависимости от конкретных свойств испытываемых РЭА. Если свойства РЭА неизвестны, то испытание следует проводить в трех взаимно перпендикулярных направлениях. При этом рекомендуется выбирать (из диапазона, оговоренного в ТУ) длительность ударов, вызывающих резонансное возбуждение испытываемых РЭА.

Ударную прочность оценивают по целостности конструкции (например, отсутствию трещин, наличию контакта). Изделия считают выдержавшими испытание на ударную прочность, если после испытания они удовлетворяют требованиям стандартов и ПИ для данного вида испытания.

Испытание на ударную устойчивость рекомендуется проводить после испытания на ударную прочность. Часто их совмещают. В отличие от испытания на ударную прочность испытание на ударную устойчивость осуществляют под электрической нагрузкой, характер и параметры которой устанавливают в ТУ и ПИ. При этом контроль параметров РЭА производят в процессе удара для проверки работоспособности изделий и выявления ложный срабатываний. Изделия считают выдержавшими испытание, если в процессе и после него они удовлетворяют требованиям, установленным в стандартах и ПИ для данного вида испытания.



2.3. Задание третье.

Изучить устройства для испытания РЭА на воздействие удара /1. с.263-268. 2. с.171-178. 3. с.138-143/

Устройства для испытания. Ударные стенды классифицируют по следующим признакам:

По характеру воспроизводимых ударов – стенды одиночных и многократных ударов;

По способу получения ударных перегрузок – стенды свободного падения и принудительного разгона платформы с испытываемым изделием;

По конструкции тормозных устройств – с жесткой наковальней, с пружинящейся наковальней, с амортизирующими резиновыми и фетровыми прокладками, со сминающимися деформируемыми тормозными устройствами, с гидравлическими тормозными устройствами и т.д.

В зависимости от конструкции ударного стенда и в особенности от применяемого в нем тормозного устройства получают ударные импульсы полусинусоидальной, треугольной и трапецеидальной формы.

Для испытания РЭА на одиночные удары служат ударные стенды копрового типа, а на многократные – стенды кулачкового типа, воспроизводящие удары полусинусоидальной формы. В этих стендах используется принцип свободного падания платформы с испытываемым изделием на амортизирующие прокладки.

Основными элементами ударного стенда копрового типа (рис.2.3.1.) являются: стол 3; основание 7, служащее для гашения скорости стола в момент удара; направляющая 4, обеспечивающая горизонтальное положение стола в момент удара; прокладки 5, формирующие ударный импульс.

Энергия, необходимая для создания удара, накапливается в результате подъема стола с закрепленным на нем испытываемым изделием на заданную высоту. Для подъема стола и последующего его сбрасывания стенд снабжается приводом и механизмом сброса. Кинетическая энергия, приобретенная телом в процессе

Звукоизоляцией, снижающей уровень звукового давления до установленных норм;

Заземляющим контуром, сопротивление не 40 м;

Бетонным фундаментом.

4. При эксплуатации стенд ударный должен быть

установлен на фундамент.

5. Питание установки от сети переменного тока

напряжением 220± В, частоты 50 Гц.

6. Потребляемая электрическая мощность (максимальная) не

более 1кВт.

7. Установка обеспечивает получение сочетаний ускорений и

Удар представляет собой механическое явление, при котором кратковременное взаимодействие тел вызывает конечное изменение вектора скорости всех или некоторых точек материальной системы при ничтожно малом изменении положения точек системы. Интервал времени, в течение которого происходит удар, обозначается буквой и называется временем удара.

Удар представляет собой распространенное явление при рассмотрении движения как макроскопических тел, так и микроскопических частиц, например молекул газа. Таким образом, явление удара играет существенную роль в ряде технических и физических задач. Природа удара существенно зависит от физической структуры соударяющихся тел.

Мгновенные силы

Так как время, в течение которого происходит удар, мало, то конечному изменению скорости при ударе соответствуют весьма большие ускорения точек системы. Поэтому силы, действующие в процессе удара, во много раз превышают обычные силы.

Эти силы называются мгновенными силами. Непосредственное измерение мгновенных сил весьма затруднено, так как время удара обычно выражается в тысячных или десятитысячных долях секунды. Кроме того, в течение этого крайне малого промежутка времени мгновенные силы не остаются постоянными: они увеличиваются от нуля до некоторого максимума, а затем снова уменьшаются до нуля. Благодаря этому силы, вызывающие удар, приходится характеризовать при помощи некоторых специальных понятий.

Ударный импульс

Рассмотрим точку массы движущуюся под действием некоторой конечной силы Пусть затем в момент к ней прикладывается мгновенная сила Р, действие которой прекращается в момент . Обозначим скорости точки в моменты и соответственно , применяя к этим моментам теорему импульсов, получим:

Первый из этих интегралов представляет импульс конечной силы за время и потому является малой величиной того же порядка, что и . Следовательно, скорость рассматриваемой точки может получить конечное изменение лишь в том случае, если будет конечным импульс мгновенной силы Р, обозначая который через имеем:

где называется ударным, или мгновенным, импульсом, он характеризует действие мгновенной силы при ударе.

Основное уравнение теории удара

Так как импульс конечной силы имеет порядок малой величины то им можно пренебречь по сравнению с конечным импульсом Следовательно, при изучении действия мгновенных сил во время удара можно не учитывать действия конечных сил, и теорема импульсов для точки при ударе имеет вид:

Скорости точки, соответствующие началу и концу удара, носят название до ударной и после ударной скорости. Полученное равенство, связывающее скорости точки до и после удара с мгновенным импульсом, называется основным уравнением теории удара. Оно в этой теории играет роль основного закона динамики.

Смещение точек при ударе

Скорость точки в процессе удара остается конечной, изменяясь от до Отсюда перемещение точки будет или это будет малая величина порядка т. Таким образом, за время удара точка не успевает сместиться сколько-нибудь заметным образом. Пренебрегая этим ничтожно малым перемещением, можно сказать, что единственным следствием действия мгновенной силы является внезапное изменение скорости точки. Так как вектор скорости может при этом изменяться не только по величине, но и по направлению, то траектория точки в момент удара может получить излом (на траектории образуется угловая точка) (рис. 131).

Уравнения удара материальной системы

Рассмотрим механическую систему, состоящую из материальных точек. Пусть среди внешних и внутренних сил, действующих на точки системы, будут мгновенные силы, которые обозначим соответственно Тогда для каждой точки системы можно записать основное уравнение удара:

Умножим каждое из этих равенств на r, векторно, где - радиус-вектор точки, соответствующий моменту удара (или бесконечно малому интервалу времени удара). Тогда получим равенство:

Чтобы исключить внутренние мгновенные силы действующие на систему, сложим почленно каждую группу указанных равенств. В результате получим:

так как ранее доказывалось, что для внутренних сил

где Р - количество движения системы.

Кроме того,

где ударный импульс внешней силы, действующей на точку системы. Следовательно, первое из полученных равенств можно записать в виде:

Так как будут количеством движения системы до и после удара, то имеем: изменение количества движения системы за время удцра равно сумме мгновенных импульсов всех внешних сил, действующих на систему.

МЕХАНИЧЕСКИЙ УДАР

Нижний Новгород
2013 год

Лабораторная работа № 1-21

Механический удар

Цель работы : Ознакомиться с элементами теории механического удара и экспериментально определить время удара , среднюю силу удара F , коэффициент восстановления Е , а также изучить основные характеристики удара и ознакомиться с цифровыми приборами для измерения временного интервалов.

Теоретическая часть

Ударом называется изменения состояния движения тела, вследствие кратковременного взаимодействия его с другим телом. Во время удара оба тела претерпевают изменения формы (деформацию). Сущность упругого удара заключается в том, что кинетическая энергия относительного движения соударяющихся тел, за короткое время, преобразуется в энергию упругой деформации или в той или иной степени в энергию молекулярного движения. В процессе удара происходит перераспределение энергии между соударяющимися телами.

Пусть на плоскую поверхность массивной пластины падает шар с некоторой скоростью V 1 и отскакивает от нее со скоростью V 2 ­­.

Обозначим – нормальные и тангенциальные составляющие скоростей и , а и – соответственно углы падения и отражения. В идеальном случае при абсолютно упругом ударе, нормальные составляющие скоростей падения и отражения и их касательные составляющие были бы равны ; . При ударе всегда происходит частичная потеря механической энергии. Отношение как нормальных, так и тангенциальных составляющих скорости после удара к составляющим скорости до удара есть физическая характеристика, зависящая от природы сталкивающихся тел.



Эту характеристику Е называют коэффициентом восстановления. Числовое значение его лежит между 0 и 1.

Определение средней силы удара,

Начальной и конечной скоростей шарика при ударе

Экспериментальная установка состоит из стального шарика А, подвешенного на проводящих нитях, и неподвижного тела В большей массы, с которым шарик соударяется. Угол отклонения подвеса α измеряется по шкале. В момент удара на шар массой m действует сила тяжести со стороны Земли , сила реакции со стороны нити и средняя сила удара со стороны тела В (см. рис.2.).

На основании теоремы об изменении импульса материальной точки:

где и – векторы скоростей шара до и после удара; τ – длительность удара.

После проектирования уравнения (2) на горизонтальную ось определим среднюю силу удара:

(3)

Скорости шарика V 1 и V 2 определяются на основании закона сохранения и превращения энергии. Изменение механической энергии системы, образованной шариком и неподвижным телом В, в поле тяготения Земли определятся суммарной работой всех внешних и внутренних не потенциальных сил. Поскольку внешняя сила перпендикулярна перемещению и нить нерастяжима, то эта сила работы не совершает, внешняя сила и внутренняя сила упругого взаимодействия – потенциальны. Если эти силы много больше других не потенциальных сил, то полная механическая энергия выбранной системы не меняется. Поэтому, уравнение баланса энергии можно записать в виде:

(4)

Из чертежа (рис. 2) следует, что , тогда из уравнения (4) получим значения начальной V 1 и конечной V 2 скоростей шарика:

(5)

где и - углы отклонения шара до и после соударения.

Метод определения длительности удара

В данной работе длительность удара шарика о плиту определяется частотомером Ч3-54, функциональная схема которого представлена на рис.3. С генератора подается на вход системы управления СУ импульсы с периодом Т. Когда в процессе соударения металлической плиты В, электрическая цепь, образованная СУ, проводящими нитями подвеса шара, шаром, плитой В и счетчиком импульсов С ч, оказывается замкнутой, и система управления СУ пропускает на вход счетчика С ч импульсы электрического тока только в интервале времени , равном времени длительности удара. Число импульсов, зарегистрированных за время , равно , откуда .

Чтобы определить длительность удара , необходимо число импульсов, зарегистрированных счетчиком, умножить на период импульсов, снимаемых с генератора Г.

Экспериментальная часть

Исходные данные:

1. Масса шарика m = (16,7 ± 0,1)*10 -3 кг.

2. Длина нити l = 0,31 ± 0,01 м.

3. Ускорение свободного падения g = (9,81 ± 0,005) м/с 2 .

4. Опыт для каждого угла выполняем 5 раз.

Результаты опыта занесем в таблицу:

α 1 = 20 0 α 1 = 30 0 α 1 = 40 0 α 1 = 50 0 α 1 = 60 0
i 2i i 2i i 2i i 2i i 2i
61,9 17,1 58,0 26,8 54,9 37,0 52,4 43,6 48,9 57,8
65,7 17,2 58,2 26,5 45,2 35,9 51,0 45,0 42,6 58,0
64,0 16,9 58,4 26,9 52,8 36,7 49,9 46,7 49,6 57,2
65,4 16,8 58,4 26,7 54,3 36,0 48,2 46,0 48,5 57,6
64,0 16,9 57,3 26,8 52,4 37,0 50,2 43,9 48,4 58,1
Сред. 64,2 16,98 58,06 26,74 51,92 36,52 50,34 45,04 47,6 57,74

Расчёты

=20 0 мкс

=30 0 мкс

=40 0 мкс

2024 teploblok29.ru. Строительный портал - Teploblok29.