Электротехнические материалы, классификация, основные свойства. Электрические свойства и характеристики материалов (общие) Применение электротехнических материалов

По назначению материалы, используемые в различных областях электроники, условно подразделяют на конструкционные и электротехнические.

Конструкционные материалы применяют для изготовления несущих конструкций, а также вспомогательных деталей и элементов радиоприборов, работающих в условиях воздействия механических нагрузок.

Электротехнические материалы находят применение в электротехнике, электронике и радиоэлектронике. Применение этих материалов обусловлено прежде всего их электрическими и магнитными свойствами.

2) по электрическим свойствам

В процессе изготовления и в различных условиях эксплуатации на электротехнические материалы воздействуют электрическое и магнитное поля в отдельности и совместно. По поведению в электрическом поле эти материалы подразделяют на

    проводниковые,

    полупроводниковые

    диэлектрические.

Классификация электроматериалов по электрическим свойствам основана на представлениях зонной теории электропроводности твердых тел.

Сущность зонной теории электропроводности твердых тел

В изолированном атоме электроны вращаются вокруг ядра на определенных орбитах. Согласно принципу Паули на каждой орбите может находиться не более двух электронов. Каждой орбите соответствует строго определенное значение энергии, которой может обладать электрон, т. е. каждая орбита представляет собой определенный энергетический уровень. Под воздействием притяжения положительно заряженного атомного ядра электроны стремятся занять ближайшие к ядру уровни с минимальным значением энергии. Поэтому нижние энергетические уровни оказываются заполненными электронами, а верхние уровни - свободными.

Электрон может скачкообразно перейти с нижнего энергетического уровня W 1 на другой свободный уровень W 2 (рис. 2.1). Для этого электрону необходимо сообщить дополнительную энергию . Если свободных уровней в атоме нет, то электрон не может изменить свою энергию, поэтому не участвует в создании электропроводности.

Рис. 2.1. Диаграмма энергетических уровней изолированного атома (1) и твердого тела (2)

В кристаллической решетке, состоящей из нескольких атомов, отдельные энергетические уровни расщепляются на подуровни, которые образуют энергетические зоны (см. рис. 2.1). При этом расщепляются свободные и заполненные энергетические уровни.

Зона, заполненная электронами, называется валентной . Верхний уровень валентной зоны (потолок) обозначается W v .

Свободная зона называется зоной проводимости . Нижний уровень зоны проводимости (дно) обозначается W c .

Промежуток между валентной зоной и зоной проводимости называют запретной зоной
. Значение запретной зоны существенно влияет на свойства материалов.

Если
равна или близка к нулю, то электроны могут перейти на свободные уровни благодаря собственной тепловой энергии и увеличить проводимость вещества. Вещества с такой структурой энергетических зон относят к проводникам. Типичными проводниками являются металлы. Проводниковые материалы служат для проведения электрического тока. Обычно к проводникам относят вещества с удельным электрическим сопротивлениемменее 10 -5 Ом-м.

Если значение запретной зоны превышает несколько электрон-вольт (1 эВ - энергия электрона, полученная им при перемещении между двумя точками электрического поля с разностью потенциалов 1В), то для перехода электронов из валентной зоны в зону проводимости требуется значительная энергия. Такие вещества относят к диэлектрикам. Диэлектрические материалы обладают способностью препятствовать прохождению тока.

Диэлектрики имеют высокое удельное электрическое сопротивление. К диэлектрическим материалам относят вещества с удельным электрическим сопротивлением более 10 7 Омм. Благодаря высокому удельному электрическому сопротивлению их используют в качестве электроизоляционных материалов.

Если значение запретной зоны составляет 0,1...0,3 эВ, то электроны легко переходят из валентной зоны в зону проводимости благодаря внешней энергии. Вещества с управляемой проводимостью относят к полупроводникам. Полупроводниковые материалы обладают проводимостью, с помощью которой можно управлять напряжением, температурой, освещенностью и т.д. Удельное электрическое сопротивление полупроводников составляет 10 -6 ...10 9 Ом-м.

В зависимости от структуры и внешних условий материалы могут переходить из одного класса в другой. Например, твердые и жидкие металлы - проводники, а пары металлов - диэлектрики; типичные при нормальных условиях полупроводники германий и кремний при воздействии высоких гидростатических давлений становятся проводниками; углерод в модификации алмаза - диэлектрик, а в модификации графита - проводник.

Рис.2.3. Сопротивления электротехнических материалов

Основным свойством вещества по отношению к электрическому полю является электропроводность , характеризующая способность материала проводить электрический ток под воздействием постоянного электрического поля, т. е. поля, напряжение которого не меняется во времени.

Электропроводность характеризуется удельной электрической проводимостью См/м и удельным электрическим сопротивлениемОм м.:

    по магнитным свойствам

По характеру взаимодействия с внешним магнитным полем все электрооматериалы подразделяются на немагнитные и магнитные.

Немагнитные материалы не взаимодействуют с магнитным полем, т.е. не приобретают магнитных свойств при воздействии на них магнитного поля (диамагнтики).

Магнитные материалы обладают способностью намагничиваться.

В изолированном атоме электроны вращаются вокруг ядра с определенным орбитальным моментом. Одновременно электроны вращаются вокруг своих осей со спиновыми магнитными моментами. Орбитальные и спиновые магнитные моменты, суммируясь, образуют магнитный момент атома. Магнитные свойства атома определяются в основном магнитными свойствами электрона, так как магнитный момент электронной оболочки атома приблизительно в 1000 раз больше магнитного момента атомного ядра.

Так как электроны с правым и левым вращениями имеют различное направление магнитных моментов, то суммарный магнитный момент атома может быть равен нулю или отличен от него.

По силе взаимодействия с магнитным полем все материалы подразделяют на

    слабомагнитные (диамагнетики, парамагнетики)

    сильномагнитные (ферромагнетики, антиферромагнетики, ферримагнетики).

Сила взаимодействия вещества с магнитным полем оценивается безразмерной величиной - магнитной восприимчивостью

где М - намагниченность вещества под действием магнитного поля, Ам -1 ; Н -напряженность магнитного поля, Ам -1 .

Слабомагнитные материалы незначительно меняют свою намагниченность под действием внешнего намагничивающего поля и характеризуются магнитной восприимчивостью k M << 1.

К слабомагнитным материалам относятся диамагнетики и парамагнетики.

Диамагнетики представляют собой материалы, состоящие из атомов, у которых оболочки полностью заполнены электронами. Поэтому результирующий магнитный момент атома равен нулю. Диамагнетизм присущ всем материалам и выражается тем сильнее, чем больше электронов в атомах и чем дальше они расположены от ядра. Их магнитные свойства проявляются благодаря повороту электронных орбит под действием внешнего намагничивающего поля. Благодаря этому появляется результирующий магнитный момент, направленный встречно внешнему полю и ослабляющий внешнее поле внутри диамагнетика.

Магнитная восприимчивость диамагнетиков k M = -10 -5 в большинстве случаев не зависит от температуры и напряженности намагничивающего поля.

Внешне диамагнетизм проявляется в том, что диамагнетик “выталкивается” из неоднородного магнитного поля.

К диамагнетикам относят большинство органических соединений и ряд металлов: медь, серебро, золото, свинец и др.

Парамагнетики характеризуются тем, что магнитные моменты отдельных атомов парамагнетиков ориентированы хаотично и в объеме твердого тела скомпенсированы. При помещении этих материалов в магнитное поле происходит ориентация незначительного числа магнитных моментов атомов и.усиление внешнего поля внутри парамагнетика. Это является следствием совпадения направления намагниченности парамагнетиков с направлением внешнего поля. После снятия внешнего магнитного поля парамагнетики сохраняют небольшую намагниченность.

Магнитная восприимчивость k M = 10 -2 ...10 -5 . У большинства парамагнетиков k M значительно зависит от температуры. К парамагнетикам относят алюминий, платину и др.

Сильномагнитные материалы обладают способностью к значительному изменению намагниченности под действием внешнего поля и характеризуются магнитной восприимчивостью k M >>1.

К сильномагнитным материалам относятся ферромагнетики, антиферромагнетики и ферримагнетики.

Ферромагнетики характеризуются следующими свойствами:

Способностью сильно намагничиваться даже в слабых магнитных полях (k M = 10 3 ... 10 5);

Способностью переходить из ферромагнитного в парамагнитное состояние при температуре, превышающей температуру Кюри Т к , т.е. способность терять магнитную восприимчивость на 3...4 порядка.

Магнитная восприимчивость k M имеет сложную нелинейную зависимость от температуры и напряженности поля.

Ферромагнетики относятся к переходным элементам, у которых нарушен нормальный порядок заполнения электронных оболочек, в результате чего атомы имеют внутренние незаполненные оболочки. Это приводит к тому, что атомы этих элементов обладают нескомпенсированным магнитным моментом. В материалах, у которых суммарный магнитный момент атома отличен от нуля, образуются домены, т.е. области, самопроизвольно намагниченные до насыщения в отсутствие внешнего магнитного поля. В зависимости от кристаллической структуры вещества домены имеют различную форму. Линейные размеры домена составляют от тысячных до десятых долей миллиметра. Отдельные домены отделены друг от друга пограничным слоем толщиной 10 -2 ...10 -8 м. В зависимости от электронного взаимодействия нескомпенсированные спины соседних атомов устанавливаются параллельно или антипараллельно. Материалы, у которых нескомпенсированные спины соседних атомов устанавливаются параллельно, являются ферромагнетиками.

Процесс намагничивания ферромагнетика начинается с роста наиболее благоприятно ориентированных доменов. Такими являются домены, у которых направления магнитных моментов близки к направлению напряженности намагничивающего поля. Число этих доменов увеличивается из-за смещения границ менее благоприятно ориентированных доменов. После окончания роста доменов в объеме кристалла намагничивание материала продолжается из-за поворота магнитных моментов доменов. При совпадении направления векторов магнитных моментов доменов с направлением напряженности магнитного поля наступает магнитное насыщение (рис. 2.4). При дальнейшем повышении напряженности внешнего электромагнитного поля намагниченность материала увеличивается незначительно. При снятии внешнего поля векторы доменов поворачиваются в обратном направлении и материал размагничивается, но не полностью.

Рис. 2.2. Схемы ориентирования вектора намагниченности в доменах ферромагнетика:

а - при отсутствии внешнего поля; б - в слабом поле с напряженностью H 1 ; в - в сильном поле с напряженностью H 2 ; г - при насыщении (H 3 = H S) и д - кривая намагничивания

При намагничивании ферромагнетиков наблюдаются явления анизотропии и магнитострикции.

Суть магнитной анизотропии состоит в том, что намагничиваемость кристалла по разным его направлениям неодинакова. В решетке кристалла ферромагнетика существуют направления легкого и трудного намагничивания. Железо и его сплавы кристаллизуются в кубическую структуру. Осями легкого намагничивания у них являются ребра куба, а самого трудного – пространственные диагонали (рис. 2.3, а). У никеля, имеющего также кубическую структуру, распределение осей намагничивания противоположное (рис. 2.3, б). У кобальта, имеющего гексагональную структуру, на­правление легкого намагничивания проходит вдоль шестиугольной грани, а трудного - вдоль ребра боковых граней (рис. 2.3, в).

Рис. 2.3. Диаграммы направления легкого и трудного намагничивания в монокристаллах железа (а), никеля (б) и кобальта (в)

В ненамагниченном образце направления магнитных моментов доменов совпадают с осями легкого намагничивания кристалла и располагаются равновероятно. При попадании образца в электромагнитное поле самым энергетически выгодным направлением является ось легкого намагничивания, составляющая с направлением внешнего поля наименьший угол.

Намагничивание и размагничивание ферромагнетика сопровождается изменением линейных размеров и формы кристалла. Это явление называется магнитострикцией . Оно характерно для всех магнитных материалов.

К ферромагнетикам относят железо, никель, кобальт и их сплавы, гадолиний, сплавы хрома и марганца и др.

Антиферромагнетики представляют собой материалы, у которых магнитные моменты соседних атомов равны, но их спины располагаются антипараллельно.

Магнитная восприимчивость k M = 10 -3 ...10 -5 и отличается специфической зависимостью от температуры.

Ферримагнетики во многом подобны ферромагнетикам, но обладают следующими особенностями:

Значительно уступают ферромагнетикам по значению намагниченности насыщения (предельной намагниченности) М s ;

В ряде случаев имеют аномальную зависимость намагниченности насыщения Ms от температуры с наличием точки компенсации.

Природа ферримагнетизма была впервые подробно изучена на ферритах - соединениях оксида железа Fe 2 O 3 с оксидом металлов, например МеОFe 2 O 3 (где Ме++ -двухвалентный металл). Магнитные свойства ферримагнетиков связаны с взаимным расположением в кристаллической решетке ионов железа и металла.

Ферримагнетики являются кристаллическими веществами с доменной структурой.

ПРАВИТЕЛЬСТВО САНКТ-ПЕТЕРБУРГА

КОМИТЕТ ПО НАУКЕ И ВЫСШЕЙ ШКОЛЕ

САНКТ-ПЕТЕРБУРГСКОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ

«АВТОТРАНСПОРТНЫЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЙ КОЛЛЕДЖ»

Конспект лекций

Специальность: 270843 Монтаж, наладка и эксплуатация электрооборудования промышленных гражданских зданий

Дисциплина: Электротехнические материалы

2014 Электромагнитное поле

Электромагнитное поле – это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами.

Электрическое поле – возникает вокруг неподвижных заряженных частиц или при изменении магнитного поля и обнаруживается по силовому воздействию на не неподвижные заряженные частицы.

Закон Кулона: сила взаимодействия двух точечных неподвижных заряженных тел в вакууме направлена вдоль прямой, соединяющей заряды, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

где q 1 , q 2 – величина зарядов, Кл;

r – расстояние между зарядами, м;

ε а – абсолютная диэлектрическая проницаемость, учитывает влияние среды на электрическое поле, Ф/м.

Магнитное поле – возникает вокруг подвижных заряженных частиц или при изменении электрического поля и обнаруживается по силовому воздействию на подвижные заряженные частицы.

Закон Ампера: сила, действующая на проводник с током, помещённый в однородное магнитное поле, прямо пропорциональная произведению магнитной индукции на силу тока, длину участка проводника и синус угла между вектором магнитной индукции и проводником.

где I 1 , I 2 – сила токов в проводниках, А;

l – длинна проводников, м;

r – расстояние между проводниками, м;

µ а – абсолютная магнитная проницаемость, учитывает влияние среды на магнитное поле, Гн/м.

Электрические и магнитные поля не существуют обособленно (независимо), т.К. Порождают друг друга. Электротехнические материалЫ

Электротехнические материалы – это материалы, обладающие определёнными свойствами по отношению к электромагнитному полю и применяемые в технике с учётом этих свойств (различные материалы подвергаются воздействиям как отдельно электрических и магнитных полей, так и их совокупности).

Применение: электрические машины, аппараты, приборы и другие элементы электрооборудования и электроустановок.

Классификация электротехнических материалов.

В проводниках есть свободные носители заряда и под действием электрического поля они приобретают направленное движение. Такое упорядоченное движение электрических зарядов и есть электрический ток .

Применение: токоведущие части электрических машин, аппаратов и сетей.

      Полупроводниковые материалы (полупроводники) – это материалы, в которых под действием эклектического поля возникает электрический ток, но их проводимость зависит от внешних условий (температуры, примесей, света, электрического и магнитного полей, давления, ядерного излучения и т.д.) (германий Ge, кремний Si, карбид кремния SiC).

Применение: электронная техника (диоды, транзисторы, тиристоры).

В диэлектриках электрические заряды прочно связаны с атомами, молекулами или ионами и в электрическом поле могут лишь смещаться, при этом происходит разделение центров положительного и отрицательного зарядов, т.е. поляризация .

Применение: изоляция токоведущих частей друг от друга, окружающих предметов и персонала.

    В магнитном поле.

    1. Слабомагнитные материалы – это материалы, у которых магнитная восприимчивость очень мала (медь Cu, алюминий Al, свинец Pb, органические соединения).

Применение: не нашли широкого применения в технике.

      Сильномагнитные материалы (магнетики) – это материалы, которые под действием магнитного поля намагничиваются и тем самым усиливают его (железо Fe, никель Ni, кобальт Co и их сплавы).

Применение: сердечники и магнитопроводы электрических машин и аппаратов, постоянные магниты.

Указанная классификация очень приблизительна, поэтому в пределах названных основных групп материалы систематизируются в подгруппы, причём при выборе критерия нет единства.

МЕХАНИЧЕСКИЕ СВОЙСТВА И ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ

Механические характеристики позволяют оценить способность материалов выдерживать внешние статические и динамические нагрузки, необходимы для выбора технологической обработки материалов (резание, штамповка, литьё), расчёта на прочность, контроля и диагностирования состояния деталей конструкций в процессе эксплуатации.

Испытание на растяжение проводят на цилиндрических образцах и брусках с прямоугольным сечением. Образец закрепляют концами в захватах испытательной машины. Нижний захват неподвижен, к другому прикладывают разрушающее растягивающее усилие, которое плавно увеличивают с определённой скоростью до момента разрыва образца.

    Пластичность – это свойство материала необратимо изменять свою форму и размеры под воздействием внешних механических нагрузок.

Относительное удлинение

где ∆l ост – приращение длины образца после разрыва, мм;

l 0 – первоначальная длина образца, мм.

Чем больше значение относительного удлинения, тем пластичнее материал.

    Прочность – это свойство материала сопротивляться деформации или разрушению под воздействием внешних механических нагрузок.

Разрушающее напряжение при растяжении (предел прочности при растяжении)

S 0 – площадь поперечного сечения образца до испытания, мм 2 .

Чем больше значение предела прочности, тем прочнее материал.

    Твёрдость – это свойство материала сопротивляться проникновению в его поверхность более твёрдого тела (индентора).

Индентор – твёрдосплавный наконечник в виде шара, пирамиды или конуса, твёрдость которого существенно превосходит твёрдость испытуемого материала.

По методу Бринелля в поверхность материала вдавливается стальной шарик.

S отп – площадь поверхности отпечатка, мм 2 .

По методу Виккерса в поверхность материала вдавливается алмазная четырёхгранная пирамида под действием нагрузки.

Чем больше значение твёрдости, тем более твёрдый материал.

    Ударную вязкость – это свойство материала сопротивляться ударной нагрузке.

Испытание на ударный изгиб проводят на брусках с прямоугольным сечением (для металлов с надрезом U-образным и V-образны). Образец помещают в маятниковом копре. Удар, наносимый по центру образца маятником, плавно увеличивают. Указатель на шкале копра фиксирует значение работы, затрачиваемой маятником на разрушением образца.

где ∆А – работа, затраченная маятником на разрушение образца, МДж.

Чем больше значение ударной вязкости, тем менее хрупок материал.

В статье приводится информация о видах материалов применяемых при изготовлении электродвигателей, генераторов и трансформаторов. Даются краткие технические характеристики некоторых из них.

Классификация электротехнических материалов

Материалы, применяемые в электрических машинах, подразделяются на три категории: конструктивные, активные и изоляционные.

Конструктивные материалы

применяются для изготовления таких деталей и частей машины, главным назначением которых является восприятие и передача механических нагрузок (валы, станины, подшипниковые щиты и стояки, различные крепежные детали и так далее). В качестве конструктивных материалов в электрических машинах используется , чугун, цветные металлы и их сплавы, пластмассы. К этим материалам предъявляются требования, общие в машиностроении.

Активные материалы

подразделяются на проводниковые и магнитные и предназначаются для изготовления активных частей машины (обмотки и сердечники магнитопроводов).
Изоляционные материалы применяются для электрической изоляции обмоток и других токоведущих частей, а также для изоляции листов электротехнической стали друг от друга в расслоенных магнитных сердечниках. Отдельную группу составляют материалы, из которых изготовляются электрические щетки, применяемые для отвода тока с подвижных частей электрических машин.

Ниже дается краткая характеристика активных и изоляционных материалов, используемых в электрических машинах.

Проводниковые материалы

Благодаря хорошей электропроводности и относительной дешевизне в качестве в электрических машинах широко применяется электротехническая , а в последнее время также рафинированный . Сравнительные свойства этих материалов приведены в таблице 1. В ряде случаев обмотки электрических машин изготовляются из медных и алюминиевых сплавов, свойства которых изменяются в широких пределах в зависимости от их состава. Медные сплавы используются также для изготовления вспомогательных токоведущих частей (коллекторные пластины, контактные кольца, болты и так далее). В целях экономии цветных металлов или увеличения механической прочности такие части иногда выполняются также из стали.

Таблица 1

Физические свойства меди и алюминия

Материал Сорт Плотность, г/см 3 Удельное сопротивление при 20°C, Ом×м Температурный коэффициент сопротивления при ϑ °C, 1/°C Коэффициент линейного расширения, 1/°C Удельная теплоемкость, Дж/(кг×°C) Удельная теплопроводность, Вт/(кг×°C)
Медь Электротехническая отожженная 8,9 (17,24÷17,54)×10 -9 1,68×10 -5 390 390
Алюминий Рафинированный 2,6-2,7 28,2×10 -9 2,3×10 -5 940 210

Температурный коэффициент сопротивления меди при температуре ϑ °C

Зависимость сопротивления меди от температуры используется для определения повышения температуры обмотки электрической машины при ее работе в горячем состоянии ϑ г над температурой окружающей среды ϑ о. На основании соотношения (2) для вычисления превышения температуры

Δϑ = ϑ г - ϑ о

можно получить формулу

(3)

где r г - сопротивление обмотки в горячем состоянии; r x - сопротивление обмотки, измеренное в холодном состоянии, когда температуры обмотки и окружающей среды одинаковы; ϑ x - температура обмотки в холодном состоянии; ϑ о - температура окружающей среды при работе машины, когда измеряется сопротивление r г.

Соотношения (1), (2) и (3) применимы также для алюминиевых обмоток, если в них заменить 235 на 245.

Магнитные материалы

Для изготовления отдельных частей магнитопроводов электрических машин применяется листовая электротехническая сталь, листовая конструкционная сталь, листовая сталь и чугун. Чугун вследствие невысоких магнитных свойств используется относительно редко.

Наиболее важный класс магнитных материалов составляют различные сорта листовой электротехнической стали. Для уменьшения потерь на и в ее состав вводят кремний. Наличие примесей углерода, кислорода и азота снижает качество электротехнической стали. Большое влияние на качество электротехнической стали оказывает технология ее изготовления. Обычную листовую электротехническую сталь получают путем горячей прокатки. В последние годы быстро растет применение холоднокатанной текстурированной стали, магнитные свойства которой при перемагничивании вдоль направления прокатки значительно выше, чем у обычной стали.

Сортамент электротехнической стали и физические свойства отдельных марок этой стали определяются ГОСТ 21427.0-75.

В электрических машинах применяются главным образом электротехнические стали марок 1211, 1212, 1213, 1311, 1312, 1411, 1412, 1511, 1512, 3411, 3412, 3413, которые соответствуют старым обозначениям марок сталей Э11, Э12, Э13, Э21, Э22, Э31, Э32, Э41, Э42, Э310, Э320, Э330. Первая цифра обозначает класс стали по структурному состоянию и виду прокатки: 1 - горячекатаная изотропная, 2 - холоднокатаная изотропная, 3 - холоднокатаная анизотропная с ребровой текстурой. Вторая цифра показывает содержание кремния. Третья цифра указывает группу по основной нормируемой характеристике: 0 - удельные потери при B = 1,7 T и f = 50 Гц (p 1,7/50), 1 - удельные потери при B = 1,5 T и частоте f = 50 Гц (p 1,5/50), 2 - удельные потери при магнитной индукции B = 1,0 T и частоте f = 400 Гц (p 1,0/400), 6 - магнитная индукция в слабых полях при 0,4 А/м (B 0,4), и 7 - магнитная индукция в средних магнитных полях при напряженности магнитного поля 10А/м (B 10). Четвертая цифра - порядковый номер. Свойство электротехнической стали в зависимости от содержания кремния приведены в таблице 2

Таблица 2

Зависимость физических свойств электротехнической стали от содержания кремния

Cвойства Вторая цифра марки стали
2 3 4 5

Плотность, г/см 3

Удельное сопротивление, Ом×м

Температурный коэффициент сопротивления, 1/°C

Удельная теплоемкость, Дж/(кг×°C)

С увеличением содержания кремния возрастает хрупкость стали. В связи с этим, чем меньше машина и, следовательно, чем меньше размеры зубцов и пазов, в которые укладываются обмотки, тем труднее использовать стали с повышенной и высокой степенью легирования. Поэтому, например, высоколегированная сталь применяется главным образом для изготовления трансформаторов и очень мощных генераторов .

В машинах с частотой тока до 100 Гц обычно применяются листовая электротехническая сталь толщиной 0,5 мм, а иногда также, в особенности в трансформаторах, сталь толщиной 0,35 мм. При более высоких частотах используется более тонкая сталь. Размеры листов электротехнической стали стандартизированы, причем ширина листов составляет 240 - 1000 мм, а длина 1500 - 2000 мм. В последнее время расширяется выпуск электротехнической стали в виде ленты, наматываемой на рулоны.

Рис. 1. Кривые намагничивания ферромагнитных материалов

1 - электротехническая сталь 1121, 1311; 2 - электротехническая сталь 1411, 1511; 3 - малоуглеродистые литая сталь, стальной прокат и поковки для электрических машин; 4 - листовая сталь толщиной 1-2 мм для полюсов; 5 - сталь 10; 6 - сталь 30; 7 - холоднокатаная электротехническая сталь 3413; 8 - серый чугун с содержанием: С - 3,2%, Si 3,27%, Мп - 0,56%, Р - 1,05%; I × А - масштабы по осям I и А; II × Б - масштабы по осям II и Б

На рисунке 1 представлены различных марок стали и чугуна, а в таблице 3, согласно ГОСТ 21427.0-75, - значения удельных потерь p в наиболее распространенных марках электротехнической стали. Индекс у буквы p указывает на индукцию B в теслах (числитель) и на частоту f перемагничивания в герцах (знаменатель), при которых гарантируются приведенные в таблице 3 значения потерь. Для марок 3411, 3412 и 3413 потери даны для случая намагничивания вдоль направления прокатки.

Таблица 3

Удельные потери в электротехнической стали

Марка стали Толщина листа, мм Удельные потери, Вт/кг Марка стали Толщина листа, мм Удельные потери, Вт/кг
p 1,0/50 p 1,5/50 p 1,7/50 p 1,0/50 p 1,5/50 p 1,7/50
1211 0,5 3,3 7,7 - 1512 0,5 1,4 3,1 -
1212 0,5 3,1 7,2 - 0,35 1,2 2,8 -
1213 0,5 2,8 6,5 - 1513 0,5 1,25 2,9 -
1311 0,5 2,5 6,1 - 0,35 1,05 2,5 -
1312 0,5 2,2 5,3 - 3411 0,5 1,1 2,45 3,2
1411 0,5 2,0 4,4 - 0,35 0,8 1,75 2,5
1412 0,5 1,8 3,9 - 3412 0,5 0,95 2,1 2,8
1511 0,5 1,55 3,5 - 0,35 0,7 1,5 2,2
0,35 1,35 3,0 - 3413 0,5 0,8 1,75 2,5
0,35 0,6 1,3 1,9

Потери на вихревые токи зависят от квадрата индукции, а потери на гистерезис - от индукции в степени, близкой к двум. Поэтому и общие потери в стали с достаточной для практических целей точностью можно считать зависящими от квадрата индукции. Потери на вихревые токи пропорциональны квадрату частоты, а на гистерезис - первой степени частоты. При частоте 50 Гц и толщине листов 0,35 - 0,5 мм потери на гистерезис превышают потери на вихревые токи в несколько раз. Зависимость общих потерь в стали от частоты вследствие этого ближе к первой степени частоты. Поэтому удельные потери для значений B и f , отличных от указанных в таблице 3, можно вычислять по формулам:

(4)

где значение B подставляется в теслах (Т).

Приведенные в таблице 3 значения удельных потерь соответствуют случаю, когда листы изолированы друг от друга.

Для изоляции применяется специальный лак или, весьма редко, тонкая бумага, а также используется оксидирование.

При штамповке возникает наклеп листов электротехнической стали. Кроме того, при сборке пакетов сердечников происходит частичное замыкание листов по их кромкам вследствие появления при штамповке грата или заусенцев. Это увеличивает потери в стали в 1,5 - 4,0 раз.

Из-за наличия между листами стали изоляции, их волнистости и неоднородности по толщине не весь объем спрессованного сердечника заполнен сталью. Коэффициент заполнения пакета сталью при изоляции лаком в среднем составляет k c = 0,93 при толщине листов 0,5 мм и k c = 0,90 при 0,35 мм.

Изоляционные материалы

К электроизоляционным материалам, применяемым в электрических машинах, предъявляются следующие требования: по возможности высокие , механическая прочность, нагревостойкость и теплопроводность, а также малая гигроскопичность. Важно, чтобы изоляция была по возможности тонкой, так как увеличение толщины изоляции ухудшает теплоотдачу и приводит к уменьшению коэффициента заполнения паза проводниковым материалом, что в свою очередь вызывает уменьшение номинальной мощности машины. В ряде случаев возникают также и другие требования, например устойчивость против различных микроорганизмов в условиях влажного тропического климата и так далее На практике все эти требования могут быть удовлетворены в разной степени.

Видео 1. Изоляционные материалы в электротехнике XVIII - XIX веков.

Изоляционные материалы могут быть твердые, жидкие и газообразные. Газообразными обычно являются воздух и водород, которые представляют собой по отношению к машине окружающую или охлаждающую среду и одновременно в ряде случаев играют роль электрической изоляции. Жидкие находят применение главным образом в трансформаторостроении в виде специального сорта минерального масла, называемого трансформаторным.

Наибольшее значение в электромашиностроении имеют твердые изоляционные материалы. Их можно разбить на следующие группы: 1) естественные органические волокнистые материалы - хлопчатая бумага, материалы на основе древесной целлюлозы и шелк; 2) неорганические материалы - слюда, стекловолокно, асбест; 3) различные синтетические материалы в виде смол, пленок, листового материала и так далее; 4) различные эмали, лаки и компаунды на основе природных и синтетических материалов.
В последние годы органические волокнистые изоляционные материалы все больше вытесняются синтетическими материалами.

Эмали применяются для изоляции проводов и в качестве покровной изоляции обмоток. Лаки используются для склейки слоистой изоляции и для пропитки обмоток, а также для нанесения покровного защитного слоя на изоляцию. Дву- или трехкратной пропиткой обмоток лаками, чередуемой с просушками, достигается заполнение пор в изоляции, что повышает теплопроводность и электрическую прочность изоляции, уменьшает ее гигроскопичность и скрепляет элементы изоляции в механическом отношении.

Пропитка компаундами служит такой же цели, как и пропитка лаками. Разница заключается только в том, что компаунды не имеют летучих растворителей, а представляют собой весьма консистентную массу, которая при нагревании размягчается, сжижается и способна под давлением проникать в поры изоляции. Ввиду отсутствия растворителей заполнение пор при компаундировании получается более плотным.
Важнейшей характеристикой изоляционных материалов является их нагревостойкость, которая решающим образом влияет на надежность работы и срок службы электрических машин. По нагревостойкости , применяемые в электрических машинах и аппаратах, подразделяются, согласно ГОСТ 8865-70, на семь классов со следующими предельно допустимыми температурами ϑ макс:

В стандартах прежних лет содержатся старые обозначения некоторых классов изоляции: вместо Y, E, F, H соответственно О, АВ, ВС, СВ.

К классу Y относятся не пропитанные жидкими диэлектриками и не погруженные в них волокнистые материалы из хлопчатой бумаги, целлюлозы и шелка, а также ряд синтетических полимеров (полиэтилен, полистирол, поливинилхлорид и др.). Этот класс изоляции в электрических машинах применяется редко.

Класс A включает в себя волокнистые материалы из хлопчатой бумаги, целлюлозы и шелка, пропитанные жидкими электроизоляционными материалами или погруженные в них, изоляцию эмаль-проводов на основе масляных и полиамиднорезольных лаков (капрон), полиамидные пленки, бутилкаучуковые и другие материалы, а также пропитанное дерево и древесные слоистые пластики. Пропитывающими веществами для этого класса изоляции являются трансформаторное масло, масляные и асфальтовые лаки и другие вещества с соответствующей нагревостойкостью. К данному классу относятся различные лакоткани, ленты, электротехнический картон, гетинакс, текстолит и другие изоляционные изделия. Изоляция класса A широко применяется для вращающихся электрических машин мощностью до 100 кВт и выше, а также в трансформаторостроении.

К классу E относится изоляция эмаль-проводов и электрическая изоляция на основе поливинилацеталевых (винифлекс, металвин), полиуретановых, эпоксидных, полиэфирных (лавсан) смол и других синтетических материалов с аналогичной нагревостойкостью. Класс изоляции E включает в себя новые синтетические материалы, применение которых быстро расширяется в машинах малой и средней мощности (до 10 кВт и выше).

Класс B объединяет изоляционные материалы на основе неорганических диэлектриков (слюда, асбест, стекловолокно) и клеящих, пропиточных и покровных лаков и смол повышенной нагревостойкости органического происхождения, причем содержание органических веществ по массе не должно превышать 50%. Сюда относятся прежде всего материалы на основе тонкой щипаной слюды (микалента, микафолий, миканит), широко применяемые в электромашиностроении.

В последнее время используются также слюдинитовые материалы, в основе которых лежит непрерывная слюдяная лента из пластинок слюды размерами до нескольких миллиметров и толщиной в несколько микрон.

К классу B принадлежат также различные синтетические материалы: полиэфирные смолы на основе фталевого ангидрида, полихлортрифторэтилен (фторопласт-3), некоторые полиуретановые смолы, пластмассы с неорганическим заполнителем и др.

Изоляция класса F включает в себя материалы на основе слюды, асбеста и стекловолокна, но с применением органических лаков и смол, модифицированных кремнийорганическими (полиорганосилоксановыми) и другими смолами с высокой нагревостойкостью, или же с применением других синтетических смол соответствующей нагревостойкости (полиэфирные смолы на основе изо- и терефталевой кислот и др.). Изоляция этого класса не должна содержать хлопчатой бумаги, целлюлозы и шелка.

К классу H относится изоляция на основе слюды, стекловолокна и асбеста в сочетании с кремнийорганическими (полиорганосилоксановыми), полиорганометаллосилксановыми и другими нагревостойкими смолами. С применением таких смол изготовляются миканиты и слюдиниты, а также стекломиканиты, стекломикафолий, стекломикаленты, стеклослюдиниты, стеклолакоткани и стеклотекстолиты.

К классу H относится и изоляция на основе политетрафторэтилена (фторопласт-4). Материалы класса H применяются в электрических машинах, работающих в весьма тяжелых условиях (горная и металлургическая промышленность, транспортные установки и пр.).

К классу изоляции C принадлежат слюда, кварц, стекловолокно, стекло, фарфор и другие керамические материалы, применяемые без органических связующих или с неорганическими связующими.

Под воздействием тепла, вибраций и других физико-химических факторов происходит старение изоляции, т. е. постепенная потеря ею механической прочности и изолирующих свойств. Опытным путем установлено, что срок службы изоляции классов A и B снижается в два раза при повышении температуры на каждые 8-10° сверх 100°C. Аналогичным образом снижается при повышении температуры также срок службы изоляции других классов.

Электрические щетки

подразделяются на две группы: 1) угольно-графитные, графитные и электрографитированные; 2) металлографитные. Для изготовления щеток первой группы используется сажа, измельченные природный графит и антрацит с каменноугольной смолой в качестве связующего. Заготовки щеток подвергаются обжигу, режим которого определяет структурную форму графита в изделии. При высоких температурах обжига достигается перевод углерода, находящегося в саже и антраците, в форму графита, вследствие чего такой процесс обжига называется графитированием. Щетки второй группы содержат также металлы (медь, серебро). Наиболее распространены щетки первой группы.

В таблице 4 приводятся характеристики ряда марок щеток.

Таблица 4

Технические характеристики электрических щеток

Класс щеток Марка Номинальная , А/см 2 Максимальная окружная скорость, м/с Удельное нажатие, Н/см 2 Переходное на пару щеток, В Коэффициент трения Характер при котором рекомендуется применение щеток

Угольно-графитные

УГ4 7 12 2-2,5 1,6-2,6 0,25 Несколько затрудненная

Графитные

Г8 11 25 2-3 1,5-2,3 0,25 Нормальная
Электрографитированные ЭГ4 12 40 1,5-2 1,6-2,4 0,20 Нормальная
ЭГ8 10 40 2-4 1,9-2,9 0,25 Самая затрудненная
ЭГ12 10-11 40 2-3 2,5-3,5 0,25 Затрудненная
ЭГ84 9 45 2-3 2,5-3,5 0,25 Самая затрудненная

Медно-графитные

МГ2 20 20 1,8-2,3 0,3-0,7 0,20 Самая легкая

Материалы, используемые для изготовления любого по назначе­нию и степени сложности электрооборудования, можно разделить на две большие группы: электротехнические и конструкционные .

Электротехнические материалы (ЭТМ)применяют для произ­водства элементов (деталей), используемых для сборки электрон­ных схем и обеспечивающих прохождение электрического тока, его электрическую изоляцию, генерацию, усиление, выпрямление, мо­дуляцию и т.п. Элементы, необходимые для осуществления этих операций (провода, кабели, волноводы, изоляторы, резисторы, ка­тушки индуктивности, магниты, трансформаторы, генераторы, дио­ды, транзисторы, термисторы, фоторезисторы, электронные лампы, электромеханические преобразователи, вариконды, лазеры, запо­минающие устройства электронных вычислительных машин (ЭВМ) и т.п.), могут быть изготовлены толь­ко из ЭТМ определенного класса, имеющих вполне определенные физико-химические свойства – электрофизические, механические, химические. От присущих данному материалу свойств будут зави­сеть качество, надежность и безопасность работы данной детали и, следовательно, электроустановки в целом.

Конструкционные материалы (КМ) используют для изготовления несущих конструкций и вспомогательных деталей и узлов, например: стальных рельсов, опор, консолей контактной сети электрифици­рованных железных дорог, которые несут не только механические нагрузки, но и электрические; корпусов для электрооборудования, предохраняющих от механических нагрузок; шасси, на которых мон­тируется электросхема; шкал, органов управления и т.п.

При рассмотрении средней по сложности электрической схемы можно увидеть, что она состоит из элементов, изготовленных из че­тырех основных классов электротехнических материалов: диэлектри­ческих, полупроводниковых, проводниковых и магнитных.

По сво­ему поведению в электрическом поле ЭТМ подразделяются на три класса: диэлектрические, полупроводниковые и проводниковые. Значения их удельного сопротивления находятся соответственно в пределах: 10 -8 – 10 -5 , 10 -6 – 10 8 ,10 7 – 10 17 Ом-м, а значения ширины за­прещенной зоны соответственно равны 0 – 0,05; 0,05 – 3 и более 3эВ. По сво­ему поведению в магнитном же поле ЭТМ подразделяются на два класса: магнитные (сильномагнит­ные) и немагнитные (слабомагнитные). К первым относятся ферро- и ферримагнетики, а ко вторым – диа-, пара- и антиферромаг­нетики.

Диэлектрические материалы обладают способностью поляризо­ваться под действием приложенного электрического поля и подраз­деляются на два подкласса: диэлектрики пассивные и активные.

Пассивные диэлектрики (или просто диэлектрики) используют:

1) для создания электрической изоляции токопроводящих час­тей – они препятствуют прохождению электрического тока другими, нежелательными путями и являются материалами электроизоляци­онными;

2) в электрических конденсаторах – служат для создания определенной электрической емкости; в данном случае важную роль играет их диэлектрическая проницаемость: чем выше эта величина, тем меньше габариты и вес конденсаторов.

Активные диэлектрики в отличие от обычных применяют для из­готовления активных элементов (деталей) электрических схем. Де­тали, изготовленные из них, служат для генерации, усиления, моду­ляции, преобразования электрического сигнала.


К ним относятся: сегнето- и пьезоэлектрики, электреты, люминофоры, жидкие кри­сталлы, электрооптические материалы и др.

Полупроводниковые материалы по величине удельной электро­проводности занимают промежуточное положение между диэлек­триками и проводниками. Характерной их особенностью является существенная зависимость электропроводности от интенсивности внешнего энергетического воздействия: напряженности электриче­ского поля, температуры, освещенности, длины волны падающего света, давления и т.п. Эта их особенность положена в основу работы полупроводниковых приборов: диодов, транзисторов, термисторов, фоторезисторов, тензодатчиков и др.

Проводниковые материалы подразделяются на четыре подкласса:

1) материалы высокой проводимости;

2) сверхпроводники и криопроводники;

3) материалы высокого (заданного) сопротивления;

4) контактные материалы.

Материалы высокой проводимости используют там, где необходи­мо, чтобы электрический ток проходил с минимальными потерями. К таким материалам относятся металлы: Сu, А1, Fе, Аg, Аu, Рt и сплавы на их основе. Из них изготавливают провода, кабели и другие токопроводящие части электроустановок.

Сверхпроводниками являются материалы, у которых при темпера­турах ниже некоторой критической (Т кр ) сопротивление электрическо­му току становится равным нулю.

Криопроводники – это материалы высокой проводимости, рабо­тающие при криогенных температурах (температуре кипения жидко­го азота -195,6 о С).

Проводниковыми материалами высокого (заданного) сопротивле­ния являются металлические сплавы, образующие твердые растворы. Из них изготавливают резисторы, термопары и электронагреватель­ные элементы.

Из контактных материалов изготавливают скользящие и разрыв­ные контакты. В зависимости от предъявляемых требований эти ма­териалы очень разнообразны по своему составу и строению. К ним относятся, с одной стороны, металлы высокой проводимости (Сu, Аg, Аu, Рt и т.п.) и сплавы на их основе, с другой – тугоплавкие ме­таллы (W, Та, Мо и др.) и композиционные материалы. Последние хоть и имеют относительно высокое электрическое сопротивление, обладают повышенной стойкостью к действию электрической дуги, образующейся при разрыве контактов.

К магнитным материалам , используемым в технике, относят фер­ромагнетики и ферриты. Их магнитная проницаемость имеет высо­кие значения (до 1,5 . 106) и зависит от напряженности внешнего маг­нитного поля и температуры. Магнитные материалы применяют для концентрации магнитного поля в сердечниках катушек индуктивно­сти, дросселях и других конструкциях, в качестве магнитопроводов запоминающих устройств в ЭВМ и т.п. Они способны сильно намаг­ничиваться даже в слабых полях, а некоторые из них сохраняют на­магниченность и после снятия внешнего магнитного поля. К наибо­лее широко используемым в технике магнитным материалам относятся Fе, Со, Ni и их сплавы.

Конструкционные материалы – одна из самых многочисленных групп. В нее входят материалы металлические и неметаллические: черные и цветные металлы, природные и синтетические полимеры и материалы на их основе, которые, в свою очередь, содержат десятки (и даже сотни) различных по составу, свойствам и назначению КМ. Наиболее широко используемыми в технике КМ являются такие ме­таллические сплавы, как углеродистые стали, легированные стали и чугуны.

ЛЕКЦИЯ 10

ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ. КЛАССИФИКАЦИЯ

Электротехническими материалами (например, контактными материалами) называют материалы, характеризуемые определенными свойствами по отношению к электрическим и магнитным полям и применяемые в технике с учетом и благодаря этим свойствам. В настоящее время число наименований электротехнических материалов, применяемых в радио-, микро-, и наноэлектронике составляет несколько тысяч. Причем все более актуальным является задача создания новых материалов с заданными свойствами (оптическими, полупроводниковыми, эмиссионными и т. д.)

Основными областями использования электротехнических материалов является электроэнергетика, электротехника, радиоэлектроника.

Электроэнергетика – это производство энергии и ее поставка потребителю. Это линии электропередач, трансформаторные станции, энергетическое хозяйство.

Электротехника – это все, что связано с превращением электрической энергии в другие виды энергии с одновременно осуществлением технологических процессов:

электротермических, - электросварочных,- электрофизических,- электрохимических и др.

Радиотехника – это системы управления энергетическими и электро-техническими объектами, передача информации, ее обработка, хранение и т. д.

Совершенствование электротехнологии повлекло за собой создание материалов, обладающих новыми свойствами: более высокой прочностью, термостойкостью, устойчивостью к агрессивному воздействию химических реакций, и имеющих высокие электроизоляционные свойства и низкую теплопроводность.

Классификация электротехнических материалов

Материалы, используемые в электронной технике, подразделяют на электротехнические, конструкционные и специального назначения.

По поведению в магнитном поле электротехнические материалы подразделяют на сильномагнитные (магнетики) и слабомагнитные. Первые нашли особенно широкое применение в технике благодаря их магнитным свойствам.

По поведению в электрическом поле материалы подразделяют на проводниковые, полупроводниковые и диэлектрические.

Большинство электротехнических материалов можно отнести к слабомагнитным и практически немагнитным. Однако и среди магнетиков следует различать проводящие, полупроводящие и практически непроводящие, что определяет частотный диапазон их применения.

Проводниковые называют материалы, основным электрическим свойствам которых является сильно выраженная электропроводность. Их применение в технике обусловлено в основном этим свойством, определяющим высокую удельную электрическую проводимость при нормальной температуре.

Полупроводниковыми называют материалы, являющиеся по удель­ной проводимости промежуточными между проводниковыми и диэлект­рическими материалами и отличи­тельным свойством которых яв­ляется сильная зависимость удель­ной проводимости от концентрации и вида примесей или различных де­фектов, а также в большинстве слу­чаев от внешних энергетических воздействий (температуры, осве­щенности и т. п.).

Диэлектрическими называют материалы, основным электриче­ским свойством которых является способность к поляризации и в которых возможно существование электростатического поля. Реальный (технический) диэлектрик тем более приближается к идеальному, чем меньше его удельная проводи­мость и чем слабее у него выраже­ны замедленные механизмы поляризации, связанные с рассеиванием электрической энергии и выделением теплоты.

При применении диэлектриков - одного из наиболее обширных классов электротехнических материалов - довольно четко определи­лась необходимость использования как пассивных, так и активных свойств этих материалов.

Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, ма­териалы для излучателей и затворов в лазерной технике, электреты и др.

Условно к проводникам относят материалы с удельным электри­ческим сопротивлением ρ < 10 -5 Ом*м, а к диэлектрикам материа­лы, у которых ρ > 10 8 Ом*м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10 -8 Ом м, а лучших диэлектриков превосходить 10 16 Ом-м. Удельное сопротив­ление полупроводников в зависимости от строения и состава материа­лов, а также от условий их эксплуатации может изменяться в пределах
10 -5 -10 8 Ом м. Хорошими проводниками электрического тока яв­ляются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причем двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ сущест­вуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Четкую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полу­проводники при низких температурах ведут себя подобно диэлектри­кам. В то же время диэлектрики при сильном нагревании могут прояв­лять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков – возбужденным.

2024 teploblok29.ru. Строительный портал - Teploblok29.